Spaces:
Running
Running
| import os | |
| from typing import List, Union | |
| import numpy as np | |
| import wandb | |
| from diffusers.utils import export_to_video | |
| from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card | |
| from PIL import Image | |
| def save_model_card( | |
| args, | |
| repo_id: str, | |
| videos: Union[List[str], Union[List[Image.Image], List[np.ndarray]]], | |
| validation_prompts: List[str], | |
| fps: int = 30, | |
| ) -> None: | |
| widget_dict = [] | |
| output_dir = str(args.output_dir) | |
| if videos is not None and len(videos) > 0: | |
| for i, (video, validation_prompt) in enumerate(zip(videos, validation_prompts)): | |
| if not isinstance(video, str): | |
| export_to_video(video, os.path.join(output_dir, f"final_video_{i}.mp4"), fps=fps) | |
| widget_dict.append( | |
| { | |
| "text": validation_prompt if validation_prompt else " ", | |
| "output": {"url": video if isinstance(video, str) else f"final_video_{i}.mp4"}, | |
| } | |
| ) | |
| model_description = f""" | |
| # LoRA Finetune | |
| <Gallery /> | |
| ## Model description | |
| This is a lora finetune of model: `{args.pretrained_model_name_or_path}`. | |
| The model was trained using [`finetrainers`](https://github.com/a-r-r-o-w/finetrainers). | |
| ## Download model | |
| [Download LoRA]({repo_id}/tree/main) in the Files & Versions tab. | |
| ## Usage | |
| Requires the [🧨 Diffusers library](https://github.com/huggingface/diffusers) installed. | |
| ```py | |
| TODO | |
| ``` | |
| For more details, including weighting, merging and fusing LoRAs, check the [documentation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) on loading LoRAs in diffusers. | |
| """ | |
| if wandb.run.url: | |
| model_description += f""" | |
| Find out the wandb run URL and training configurations [here]({wandb.run.url}). | |
| """ | |
| model_card = load_or_create_model_card( | |
| repo_id_or_path=repo_id, | |
| from_training=True, | |
| base_model=args.pretrained_model_name_or_path, | |
| model_description=model_description, | |
| widget=widget_dict, | |
| ) | |
| tags = [ | |
| "text-to-video", | |
| "diffusers-training", | |
| "diffusers", | |
| "lora", | |
| "template:sd-lora", | |
| ] | |
| model_card = populate_model_card(model_card, tags=tags) | |
| model_card.save(os.path.join(args.output_dir, "README.md")) | |