param improvements from investigation
Browse files- eval_multiple.py +4 -3
- sweep.py +7 -6
eval_multiple.py
CHANGED
@@ -7,7 +7,7 @@ from utils.audio import load_audio
|
|
7 |
|
8 |
if __name__ == '__main__':
|
9 |
fname = 'Y:\\libritts\\test-clean\\transcribed-brief-w2v.tsv'
|
10 |
-
outpath = 'D:\\tmp\\tortoise-tts-eval\\
|
11 |
outpath_real = 'D:\\tmp\\tortoise-tts-eval\\real'
|
12 |
|
13 |
os.makedirs(outpath, exist_ok=True)
|
@@ -24,8 +24,9 @@ if __name__ == '__main__':
|
|
24 |
path = os.path.join(os.path.dirname(fname), line[1])
|
25 |
cond_audio = load_audio(path, 22050)
|
26 |
torchaudio.save(os.path.join(outpath_real, os.path.basename(line[1])), cond_audio, 22050)
|
27 |
-
sample = tts.tts(transcript, [cond_audio, cond_audio], num_autoregressive_samples=
|
28 |
-
|
|
|
29 |
down = torchaudio.functional.resample(sample, 24000, 22050)
|
30 |
fout_path = os.path.join(outpath, os.path.basename(line[1]))
|
31 |
torchaudio.save(fout_path, down.squeeze(0), 22050)
|
|
|
7 |
|
8 |
if __name__ == '__main__':
|
9 |
fname = 'Y:\\libritts\\test-clean\\transcribed-brief-w2v.tsv'
|
10 |
+
outpath = 'D:\\tmp\\tortoise-tts-eval\\attempt_best'
|
11 |
outpath_real = 'D:\\tmp\\tortoise-tts-eval\\real'
|
12 |
|
13 |
os.makedirs(outpath, exist_ok=True)
|
|
|
24 |
path = os.path.join(os.path.dirname(fname), line[1])
|
25 |
cond_audio = load_audio(path, 22050)
|
26 |
torchaudio.save(os.path.join(outpath_real, os.path.basename(line[1])), cond_audio, 22050)
|
27 |
+
sample = tts.tts(transcript, [cond_audio, cond_audio], num_autoregressive_samples=512, k=1,
|
28 |
+
repetition_penalty=2.0, length_penalty=2, temperature=.5, top_p=.5,
|
29 |
+
diffusion_temperature=.7, cond_free_k=2, diffusion_iterations=400)
|
30 |
down = torchaudio.functional.resample(sample, 24000, 22050)
|
31 |
fout_path = os.path.join(outpath, os.path.basename(line[1]))
|
32 |
torchaudio.save(fout_path, down.squeeze(0), 22050)
|
sweep.py
CHANGED
@@ -25,18 +25,18 @@ def permutations(args):
|
|
25 |
|
26 |
if __name__ == '__main__':
|
27 |
fname = 'Y:\\libritts\\test-clean\\transcribed-brief-w2v.tsv'
|
28 |
-
outpath_base = 'D:\\tmp\\tortoise-tts-eval\\
|
29 |
outpath_real = 'D:\\tmp\\tortoise-tts-eval\\real'
|
30 |
|
31 |
arg_ranges = {
|
32 |
-
'
|
33 |
-
'
|
34 |
}
|
35 |
cfgs = permutations(arg_ranges)
|
36 |
shuffle(cfgs)
|
37 |
|
38 |
for cfg in cfgs:
|
39 |
-
outpath = os.path.join(outpath_base, f'{cfg["
|
40 |
os.makedirs(outpath, exist_ok=True)
|
41 |
os.makedirs(outpath_real, exist_ok=True)
|
42 |
with open(fname, 'r', encoding='utf-8') as f:
|
@@ -51,8 +51,9 @@ if __name__ == '__main__':
|
|
51 |
path = os.path.join(os.path.dirname(fname), line[1])
|
52 |
cond_audio = load_audio(path, 22050)
|
53 |
torchaudio.save(os.path.join(outpath_real, os.path.basename(line[1])), cond_audio, 22050)
|
54 |
-
sample = tts.tts(transcript, [cond_audio, cond_audio], num_autoregressive_samples=256, k=1, diffusion_iterations=200,
|
55 |
-
repetition_penalty=
|
|
|
56 |
down = torchaudio.functional.resample(sample, 24000, 22050)
|
57 |
fout_path = os.path.join(outpath, os.path.basename(line[1]))
|
58 |
torchaudio.save(fout_path, down.squeeze(0), 22050)
|
|
|
25 |
|
26 |
if __name__ == '__main__':
|
27 |
fname = 'Y:\\libritts\\test-clean\\transcribed-brief-w2v.tsv'
|
28 |
+
outpath_base = 'D:\\tmp\\tortoise-tts-eval\\std_sweep3'
|
29 |
outpath_real = 'D:\\tmp\\tortoise-tts-eval\\real'
|
30 |
|
31 |
arg_ranges = {
|
32 |
+
'top_p': [.3,.4,.5,.6],
|
33 |
+
'temperature': [.5, .6],
|
34 |
}
|
35 |
cfgs = permutations(arg_ranges)
|
36 |
shuffle(cfgs)
|
37 |
|
38 |
for cfg in cfgs:
|
39 |
+
outpath = os.path.join(outpath_base, f'{cfg["top_p"]}_{cfg["temperature"]}')
|
40 |
os.makedirs(outpath, exist_ok=True)
|
41 |
os.makedirs(outpath_real, exist_ok=True)
|
42 |
with open(fname, 'r', encoding='utf-8') as f:
|
|
|
51 |
path = os.path.join(os.path.dirname(fname), line[1])
|
52 |
cond_audio = load_audio(path, 22050)
|
53 |
torchaudio.save(os.path.join(outpath_real, os.path.basename(line[1])), cond_audio, 22050)
|
54 |
+
sample = tts.tts(transcript, [cond_audio, cond_audio], num_autoregressive_samples=256, k=1, diffusion_iterations=200,
|
55 |
+
repetition_penalty=2.0, length_penalty=2, temperature=.5, top_p=.5,
|
56 |
+
diffusion_temperature=.7, cond_free_k=2, **cfg)
|
57 |
down = torchaudio.functional.resample(sample, 24000, 22050)
|
58 |
fout_path = os.path.join(outpath, os.path.basename(line[1]))
|
59 |
torchaudio.save(fout_path, down.squeeze(0), 22050)
|