add regenerate option
Browse files
README.md
CHANGED
@@ -44,10 +44,18 @@ python do_tts.py --text "I'm going to speak this" --voice dotrice --preset fast
|
|
44 |
### read.py
|
45 |
|
46 |
This script provides tools for reading large amounts of text.
|
|
|
47 |
```shell
|
48 |
python read.py --textfile <your text to be read> --voice dotrice
|
49 |
```
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
### API
|
52 |
|
53 |
Tortoise can be used programmatically, like so:
|
|
|
44 |
### read.py
|
45 |
|
46 |
This script provides tools for reading large amounts of text.
|
47 |
+
|
48 |
```shell
|
49 |
python read.py --textfile <your text to be read> --voice dotrice
|
50 |
```
|
51 |
|
52 |
+
This will break up the textfile into sentences, and then convert them to speech one at a time. It will output a series
|
53 |
+
of spoken clips as they are generated. Once all the clips are generated, it will combine them into a single file and
|
54 |
+
output that as well.
|
55 |
+
|
56 |
+
Sometimes Tortoise screws up an output. You can re-generate any bad clips by re-running `read.py` with the --regenerate
|
57 |
+
argument.
|
58 |
+
|
59 |
### API
|
60 |
|
61 |
Tortoise can be used programmatically, like so:
|
read.py
CHANGED
@@ -35,6 +35,7 @@ if __name__ == '__main__':
|
|
35 |
'Use the & character to join two voices together. Use a comma to perform inference on multiple voices.', default='patrick_stewart')
|
36 |
parser.add_argument('--output_path', type=str, help='Where to store outputs.', default='results/longform/')
|
37 |
parser.add_argument('--preset', type=str, help='Which voice preset to use.', default='standard')
|
|
|
38 |
parser.add_argument('--voice_diversity_intelligibility_slider', type=float,
|
39 |
help='How to balance vocal diversity with the quality/intelligibility of the spoken text. 0 means highly diverse voice (not recommended), 1 means maximize intellibility',
|
40 |
default=.5)
|
@@ -43,6 +44,9 @@ if __name__ == '__main__':
|
|
43 |
outpath = args.output_path
|
44 |
voices = get_voices()
|
45 |
selected_voices = args.voice.split(',')
|
|
|
|
|
|
|
46 |
for selected_voice in selected_voices:
|
47 |
voice_outpath = os.path.join(outpath, selected_voice)
|
48 |
os.makedirs(voice_outpath, exist_ok=True)
|
@@ -71,6 +75,9 @@ if __name__ == '__main__':
|
|
71 |
conds.append(c)
|
72 |
all_parts = []
|
73 |
for j, text in enumerate(texts):
|
|
|
|
|
|
|
74 |
gen = tts.tts_with_preset(text, conds, preset=args.preset, clvp_cvvp_slider=args.voice_diversity_intelligibility_slider)
|
75 |
gen = gen.squeeze(0).cpu()
|
76 |
torchaudio.save(os.path.join(voice_outpath, f'{j}.wav'), gen, 24000)
|
|
|
35 |
'Use the & character to join two voices together. Use a comma to perform inference on multiple voices.', default='patrick_stewart')
|
36 |
parser.add_argument('--output_path', type=str, help='Where to store outputs.', default='results/longform/')
|
37 |
parser.add_argument('--preset', type=str, help='Which voice preset to use.', default='standard')
|
38 |
+
parser.add_argument('--regenerate', type=str, help='Comma-separated list of clip numbers to re-generate, or nothing.', default=None)
|
39 |
parser.add_argument('--voice_diversity_intelligibility_slider', type=float,
|
40 |
help='How to balance vocal diversity with the quality/intelligibility of the spoken text. 0 means highly diverse voice (not recommended), 1 means maximize intellibility',
|
41 |
default=.5)
|
|
|
44 |
outpath = args.output_path
|
45 |
voices = get_voices()
|
46 |
selected_voices = args.voice.split(',')
|
47 |
+
regenerate = args.regenerate
|
48 |
+
if regenerate is not None:
|
49 |
+
regenerate = [int(e) for e in regenerate.split(',')]
|
50 |
for selected_voice in selected_voices:
|
51 |
voice_outpath = os.path.join(outpath, selected_voice)
|
52 |
os.makedirs(voice_outpath, exist_ok=True)
|
|
|
75 |
conds.append(c)
|
76 |
all_parts = []
|
77 |
for j, text in enumerate(texts):
|
78 |
+
if regenerate is not None and j not in regenerate:
|
79 |
+
all_parts.append(load_audio(os.path.join(voice_outpath, f'{j}.wav'), 24000))
|
80 |
+
continue
|
81 |
gen = tts.tts_with_preset(text, conds, preset=args.preset, clvp_cvvp_slider=args.voice_diversity_intelligibility_slider)
|
82 |
gen = gen.squeeze(0).cpu()
|
83 |
torchaudio.save(os.path.join(voice_outpath, f'{j}.wav'), gen, 24000)
|