|
""" |
|
This is an almost carbon copy of gaussian_diffusion.py from OpenAI's ImprovedDiffusion repo, which itself: |
|
|
|
This code started out as a PyTorch port of Ho et al's diffusion models: |
|
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py |
|
|
|
Docstrings have been added, as well as DDIM sampling and a new collection of beta schedules. |
|
""" |
|
|
|
import enum |
|
import math |
|
|
|
import numpy as np |
|
import torch |
|
import torch as th |
|
from tqdm import tqdm |
|
|
|
|
|
def normal_kl(mean1, logvar1, mean2, logvar2): |
|
""" |
|
Compute the KL divergence between two gaussians. |
|
|
|
Shapes are automatically broadcasted, so batches can be compared to |
|
scalars, among other use cases. |
|
""" |
|
tensor = None |
|
for obj in (mean1, logvar1, mean2, logvar2): |
|
if isinstance(obj, th.Tensor): |
|
tensor = obj |
|
break |
|
assert tensor is not None, "at least one argument must be a Tensor" |
|
|
|
|
|
|
|
logvar1, logvar2 = [ |
|
x if isinstance(x, th.Tensor) else th.tensor(x).to(tensor) |
|
for x in (logvar1, logvar2) |
|
] |
|
|
|
return 0.5 * ( |
|
-1.0 |
|
+ logvar2 |
|
- logvar1 |
|
+ th.exp(logvar1 - logvar2) |
|
+ ((mean1 - mean2) ** 2) * th.exp(-logvar2) |
|
) |
|
|
|
|
|
def approx_standard_normal_cdf(x): |
|
""" |
|
A fast approximation of the cumulative distribution function of the |
|
standard normal. |
|
""" |
|
return 0.5 * (1.0 + th.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * th.pow(x, 3)))) |
|
|
|
|
|
def discretized_gaussian_log_likelihood(x, *, means, log_scales): |
|
""" |
|
Compute the log-likelihood of a Gaussian distribution discretizing to a |
|
given image. |
|
|
|
:param x: the target images. It is assumed that this was uint8 values, |
|
rescaled to the range [-1, 1]. |
|
:param means: the Gaussian mean Tensor. |
|
:param log_scales: the Gaussian log stddev Tensor. |
|
:return: a tensor like x of log probabilities (in nats). |
|
""" |
|
assert x.shape == means.shape == log_scales.shape |
|
centered_x = x - means |
|
inv_stdv = th.exp(-log_scales) |
|
plus_in = inv_stdv * (centered_x + 1.0 / 255.0) |
|
cdf_plus = approx_standard_normal_cdf(plus_in) |
|
min_in = inv_stdv * (centered_x - 1.0 / 255.0) |
|
cdf_min = approx_standard_normal_cdf(min_in) |
|
log_cdf_plus = th.log(cdf_plus.clamp(min=1e-12)) |
|
log_one_minus_cdf_min = th.log((1.0 - cdf_min).clamp(min=1e-12)) |
|
cdf_delta = cdf_plus - cdf_min |
|
log_probs = th.where( |
|
x < -0.999, |
|
log_cdf_plus, |
|
th.where(x > 0.999, log_one_minus_cdf_min, th.log(cdf_delta.clamp(min=1e-12))), |
|
) |
|
assert log_probs.shape == x.shape |
|
return log_probs |
|
|
|
|
|
def mean_flat(tensor): |
|
""" |
|
Take the mean over all non-batch dimensions. |
|
""" |
|
return tensor.mean(dim=list(range(1, len(tensor.shape)))) |
|
|
|
|
|
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps): |
|
""" |
|
Get a pre-defined beta schedule for the given name. |
|
|
|
The beta schedule library consists of beta schedules which remain similar |
|
in the limit of num_diffusion_timesteps. |
|
Beta schedules may be added, but should not be removed or changed once |
|
they are committed to maintain backwards compatibility. |
|
""" |
|
if schedule_name == "linear": |
|
|
|
|
|
scale = 1000 / num_diffusion_timesteps |
|
beta_start = scale * 0.0001 |
|
beta_end = scale * 0.02 |
|
return np.linspace( |
|
beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64 |
|
) |
|
elif schedule_name == "cosine": |
|
return betas_for_alpha_bar( |
|
num_diffusion_timesteps, |
|
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, |
|
) |
|
else: |
|
raise NotImplementedError(f"unknown beta schedule: {schedule_name}") |
|
|
|
|
|
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): |
|
""" |
|
Create a beta schedule that discretizes the given alpha_t_bar function, |
|
which defines the cumulative product of (1-beta) over time from t = [0,1]. |
|
|
|
:param num_diffusion_timesteps: the number of betas to produce. |
|
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and |
|
produces the cumulative product of (1-beta) up to that |
|
part of the diffusion process. |
|
:param max_beta: the maximum beta to use; use values lower than 1 to |
|
prevent singularities. |
|
""" |
|
betas = [] |
|
for i in range(num_diffusion_timesteps): |
|
t1 = i / num_diffusion_timesteps |
|
t2 = (i + 1) / num_diffusion_timesteps |
|
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) |
|
return np.array(betas) |
|
|
|
|
|
class ModelMeanType(enum.Enum): |
|
""" |
|
Which type of output the model predicts. |
|
""" |
|
|
|
PREVIOUS_X = 'previous_x' |
|
START_X = 'start_x' |
|
EPSILON = 'epsilon' |
|
|
|
|
|
class ModelVarType(enum.Enum): |
|
""" |
|
What is used as the model's output variance. |
|
|
|
The LEARNED_RANGE option has been added to allow the model to predict |
|
values between FIXED_SMALL and FIXED_LARGE, making its job easier. |
|
""" |
|
|
|
LEARNED = 'learned' |
|
FIXED_SMALL = 'fixed_small' |
|
FIXED_LARGE = 'fixed_large' |
|
LEARNED_RANGE = 'learned_range' |
|
|
|
|
|
class LossType(enum.Enum): |
|
MSE = 'mse' |
|
RESCALED_MSE = 'rescaled_mse' |
|
KL = 'kl' |
|
RESCALED_KL = 'rescaled_kl' |
|
|
|
def is_vb(self): |
|
return self == LossType.KL or self == LossType.RESCALED_KL |
|
|
|
|
|
class GaussianDiffusion: |
|
""" |
|
Utilities for training and sampling diffusion models. |
|
|
|
Ported directly from here, and then adapted over time to further experimentation. |
|
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42 |
|
|
|
:param betas: a 1-D numpy array of betas for each diffusion timestep, |
|
starting at T and going to 1. |
|
:param model_mean_type: a ModelMeanType determining what the model outputs. |
|
:param model_var_type: a ModelVarType determining how variance is output. |
|
:param loss_type: a LossType determining the loss function to use. |
|
:param rescale_timesteps: if True, pass floating point timesteps into the |
|
model so that they are always scaled like in the |
|
original paper (0 to 1000). |
|
""" |
|
|
|
def __init__( |
|
self, |
|
*, |
|
betas, |
|
model_mean_type, |
|
model_var_type, |
|
loss_type, |
|
rescale_timesteps=False, |
|
conditioning_free=False, |
|
conditioning_free_k=1, |
|
ramp_conditioning_free=True, |
|
): |
|
self.model_mean_type = ModelMeanType(model_mean_type) |
|
self.model_var_type = ModelVarType(model_var_type) |
|
self.loss_type = LossType(loss_type) |
|
self.rescale_timesteps = rescale_timesteps |
|
self.conditioning_free = conditioning_free |
|
self.conditioning_free_k = conditioning_free_k |
|
self.ramp_conditioning_free = ramp_conditioning_free |
|
|
|
|
|
betas = np.array(betas, dtype=np.float64) |
|
self.betas = betas |
|
assert len(betas.shape) == 1, "betas must be 1-D" |
|
assert (betas > 0).all() and (betas <= 1).all() |
|
|
|
self.num_timesteps = int(betas.shape[0]) |
|
|
|
alphas = 1.0 - betas |
|
self.alphas_cumprod = np.cumprod(alphas, axis=0) |
|
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1]) |
|
self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0) |
|
assert self.alphas_cumprod_prev.shape == (self.num_timesteps,) |
|
|
|
|
|
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod) |
|
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod) |
|
self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod) |
|
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod) |
|
self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1) |
|
|
|
|
|
self.posterior_variance = ( |
|
betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) |
|
) |
|
|
|
|
|
self.posterior_log_variance_clipped = np.log( |
|
np.append(self.posterior_variance[1], self.posterior_variance[1:]) |
|
) |
|
self.posterior_mean_coef1 = ( |
|
betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) |
|
) |
|
self.posterior_mean_coef2 = ( |
|
(1.0 - self.alphas_cumprod_prev) |
|
* np.sqrt(alphas) |
|
/ (1.0 - self.alphas_cumprod) |
|
) |
|
|
|
def q_mean_variance(self, x_start, t): |
|
""" |
|
Get the distribution q(x_t | x_0). |
|
|
|
:param x_start: the [N x C x ...] tensor of noiseless inputs. |
|
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. |
|
:return: A tuple (mean, variance, log_variance), all of x_start's shape. |
|
""" |
|
mean = ( |
|
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start |
|
) |
|
variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) |
|
log_variance = _extract_into_tensor( |
|
self.log_one_minus_alphas_cumprod, t, x_start.shape |
|
) |
|
return mean, variance, log_variance |
|
|
|
def q_sample(self, x_start, t, noise=None): |
|
""" |
|
Diffuse the data for a given number of diffusion steps. |
|
|
|
In other words, sample from q(x_t | x_0). |
|
|
|
:param x_start: the initial data batch. |
|
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. |
|
:param noise: if specified, the split-out normal noise. |
|
:return: A noisy version of x_start. |
|
""" |
|
if noise is None: |
|
noise = th.randn_like(x_start) |
|
assert noise.shape == x_start.shape |
|
return ( |
|
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start |
|
+ _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) |
|
* noise |
|
) |
|
|
|
def q_posterior_mean_variance(self, x_start, x_t, t): |
|
""" |
|
Compute the mean and variance of the diffusion posterior: |
|
|
|
q(x_{t-1} | x_t, x_0) |
|
|
|
""" |
|
assert x_start.shape == x_t.shape |
|
posterior_mean = ( |
|
_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start |
|
+ _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t |
|
) |
|
posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape) |
|
posterior_log_variance_clipped = _extract_into_tensor( |
|
self.posterior_log_variance_clipped, t, x_t.shape |
|
) |
|
assert ( |
|
posterior_mean.shape[0] |
|
== posterior_variance.shape[0] |
|
== posterior_log_variance_clipped.shape[0] |
|
== x_start.shape[0] |
|
) |
|
return posterior_mean, posterior_variance, posterior_log_variance_clipped |
|
|
|
def p_mean_variance( |
|
self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None |
|
): |
|
""" |
|
Apply the model to get p(x_{t-1} | x_t), as well as a prediction of |
|
the initial x, x_0. |
|
|
|
:param model: the model, which takes a signal and a batch of timesteps |
|
as input. |
|
:param x: the [N x C x ...] tensor at time t. |
|
:param t: a 1-D Tensor of timesteps. |
|
:param clip_denoised: if True, clip the denoised signal into [-1, 1]. |
|
:param denoised_fn: if not None, a function which applies to the |
|
x_start prediction before it is used to sample. Applies before |
|
clip_denoised. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
:return: a dict with the following keys: |
|
- 'mean': the model mean output. |
|
- 'variance': the model variance output. |
|
- 'log_variance': the log of 'variance'. |
|
- 'pred_xstart': the prediction for x_0. |
|
""" |
|
if model_kwargs is None: |
|
model_kwargs = {} |
|
|
|
B, C = x.shape[:2] |
|
assert t.shape == (B,) |
|
model_output = model(x, self._scale_timesteps(t), **model_kwargs) |
|
if self.conditioning_free: |
|
model_output_no_conditioning = model(x, self._scale_timesteps(t), conditioning_free=True, **model_kwargs) |
|
|
|
if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]: |
|
assert model_output.shape == (B, C * 2, *x.shape[2:]) |
|
model_output, model_var_values = th.split(model_output, C, dim=1) |
|
if self.conditioning_free: |
|
model_output_no_conditioning, _ = th.split(model_output_no_conditioning, C, dim=1) |
|
if self.model_var_type == ModelVarType.LEARNED: |
|
model_log_variance = model_var_values |
|
model_variance = th.exp(model_log_variance) |
|
else: |
|
min_log = _extract_into_tensor( |
|
self.posterior_log_variance_clipped, t, x.shape |
|
) |
|
max_log = _extract_into_tensor(np.log(self.betas), t, x.shape) |
|
|
|
frac = (model_var_values + 1) / 2 |
|
model_log_variance = frac * max_log + (1 - frac) * min_log |
|
model_variance = th.exp(model_log_variance) |
|
else: |
|
model_variance, model_log_variance = { |
|
|
|
|
|
ModelVarType.FIXED_LARGE: ( |
|
np.append(self.posterior_variance[1], self.betas[1:]), |
|
np.log(np.append(self.posterior_variance[1], self.betas[1:])), |
|
), |
|
ModelVarType.FIXED_SMALL: ( |
|
self.posterior_variance, |
|
self.posterior_log_variance_clipped, |
|
), |
|
}[self.model_var_type] |
|
model_variance = _extract_into_tensor(model_variance, t, x.shape) |
|
model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape) |
|
|
|
if self.conditioning_free: |
|
if self.ramp_conditioning_free: |
|
assert t.shape[0] == 1 |
|
cfk = self.conditioning_free_k * (1 - self._scale_timesteps(t)[0].item() / self.num_timesteps) |
|
else: |
|
cfk = self.conditioning_free_k |
|
model_output = (1 + cfk) * model_output - cfk * model_output_no_conditioning |
|
|
|
def process_xstart(x): |
|
if denoised_fn is not None: |
|
x = denoised_fn(x) |
|
if clip_denoised: |
|
return x.clamp(-1, 1) |
|
return x |
|
|
|
if self.model_mean_type == ModelMeanType.PREVIOUS_X: |
|
pred_xstart = process_xstart( |
|
self._predict_xstart_from_xprev(x_t=x, t=t, xprev=model_output) |
|
) |
|
model_mean = model_output |
|
elif self.model_mean_type in [ModelMeanType.START_X, ModelMeanType.EPSILON]: |
|
if self.model_mean_type == ModelMeanType.START_X: |
|
pred_xstart = process_xstart(model_output) |
|
else: |
|
pred_xstart = process_xstart( |
|
self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output) |
|
) |
|
model_mean, _, _ = self.q_posterior_mean_variance( |
|
x_start=pred_xstart, x_t=x, t=t |
|
) |
|
else: |
|
raise NotImplementedError(self.model_mean_type) |
|
|
|
assert ( |
|
model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape |
|
) |
|
return { |
|
"mean": model_mean, |
|
"variance": model_variance, |
|
"log_variance": model_log_variance, |
|
"pred_xstart": pred_xstart, |
|
} |
|
|
|
def _predict_xstart_from_eps(self, x_t, t, eps): |
|
assert x_t.shape == eps.shape |
|
return ( |
|
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t |
|
- _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps |
|
) |
|
|
|
def _predict_xstart_from_xprev(self, x_t, t, xprev): |
|
assert x_t.shape == xprev.shape |
|
return ( |
|
_extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev |
|
- _extract_into_tensor( |
|
self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape |
|
) |
|
* x_t |
|
) |
|
|
|
def _predict_eps_from_xstart(self, x_t, t, pred_xstart): |
|
return ( |
|
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t |
|
- pred_xstart |
|
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) |
|
|
|
def _scale_timesteps(self, t): |
|
if self.rescale_timesteps: |
|
return t.float() * (1000.0 / self.num_timesteps) |
|
return t |
|
|
|
def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None): |
|
""" |
|
Compute the mean for the previous step, given a function cond_fn that |
|
computes the gradient of a conditional log probability with respect to |
|
x. In particular, cond_fn computes grad(log(p(y|x))), and we want to |
|
condition on y. |
|
|
|
This uses the conditioning strategy from Sohl-Dickstein et al. (2015). |
|
""" |
|
gradient = cond_fn(x, self._scale_timesteps(t), **model_kwargs) |
|
new_mean = ( |
|
p_mean_var["mean"].float() + p_mean_var["variance"] * gradient.float() |
|
) |
|
return new_mean |
|
|
|
def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None): |
|
""" |
|
Compute what the p_mean_variance output would have been, should the |
|
model's score function be conditioned by cond_fn. |
|
|
|
See condition_mean() for details on cond_fn. |
|
|
|
Unlike condition_mean(), this instead uses the conditioning strategy |
|
from Song et al (2020). |
|
""" |
|
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) |
|
|
|
eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"]) |
|
eps = eps - (1 - alpha_bar).sqrt() * cond_fn( |
|
x, self._scale_timesteps(t), **model_kwargs |
|
) |
|
|
|
out = p_mean_var.copy() |
|
out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps) |
|
out["mean"], _, _ = self.q_posterior_mean_variance( |
|
x_start=out["pred_xstart"], x_t=x, t=t |
|
) |
|
return out |
|
|
|
def p_sample( |
|
self, |
|
model, |
|
x, |
|
t, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
cond_fn=None, |
|
model_kwargs=None, |
|
): |
|
""" |
|
Sample x_{t-1} from the model at the given timestep. |
|
|
|
:param model: the model to sample from. |
|
:param x: the current tensor at x_{t-1}. |
|
:param t: the value of t, starting at 0 for the first diffusion step. |
|
:param clip_denoised: if True, clip the x_start prediction to [-1, 1]. |
|
:param denoised_fn: if not None, a function which applies to the |
|
x_start prediction before it is used to sample. |
|
:param cond_fn: if not None, this is a gradient function that acts |
|
similarly to the model. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
:return: a dict containing the following keys: |
|
- 'sample': a random sample from the model. |
|
- 'pred_xstart': a prediction of x_0. |
|
""" |
|
out = self.p_mean_variance( |
|
model, |
|
x, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
model_kwargs=model_kwargs, |
|
) |
|
noise = th.randn_like(x) |
|
nonzero_mask = ( |
|
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) |
|
) |
|
if cond_fn is not None: |
|
out["mean"] = self.condition_mean( |
|
cond_fn, out, x, t, model_kwargs=model_kwargs |
|
) |
|
sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise |
|
return {"sample": sample, "pred_xstart": out["pred_xstart"]} |
|
|
|
def p_sample_loop( |
|
self, |
|
model, |
|
shape, |
|
noise=None, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
cond_fn=None, |
|
model_kwargs=None, |
|
device=None, |
|
progress=False, |
|
): |
|
""" |
|
Generate samples from the model. |
|
|
|
:param model: the model module. |
|
:param shape: the shape of the samples, (N, C, H, W). |
|
:param noise: if specified, the noise from the encoder to sample. |
|
Should be of the same shape as `shape`. |
|
:param clip_denoised: if True, clip x_start predictions to [-1, 1]. |
|
:param denoised_fn: if not None, a function which applies to the |
|
x_start prediction before it is used to sample. |
|
:param cond_fn: if not None, this is a gradient function that acts |
|
similarly to the model. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
:param device: if specified, the device to create the samples on. |
|
If not specified, use a model parameter's device. |
|
:param progress: if True, show a tqdm progress bar. |
|
:return: a non-differentiable batch of samples. |
|
""" |
|
final = None |
|
for sample in self.p_sample_loop_progressive( |
|
model, |
|
shape, |
|
noise=noise, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
cond_fn=cond_fn, |
|
model_kwargs=model_kwargs, |
|
device=device, |
|
progress=progress, |
|
): |
|
final = sample |
|
return final["sample"] |
|
|
|
def p_sample_loop_progressive( |
|
self, |
|
model, |
|
shape, |
|
noise=None, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
cond_fn=None, |
|
model_kwargs=None, |
|
device=None, |
|
progress=False, |
|
): |
|
""" |
|
Generate samples from the model and yield intermediate samples from |
|
each timestep of diffusion. |
|
|
|
Arguments are the same as p_sample_loop(). |
|
Returns a generator over dicts, where each dict is the return value of |
|
p_sample(). |
|
""" |
|
if device is None: |
|
device = next(model.parameters()).device |
|
assert isinstance(shape, (tuple, list)) |
|
if noise is not None: |
|
img = noise |
|
else: |
|
img = th.randn(*shape, device=device) |
|
indices = list(range(self.num_timesteps))[::-1] |
|
|
|
for i in tqdm(indices, disable=not progress): |
|
t = th.tensor([i] * shape[0], device=device) |
|
with th.no_grad(): |
|
out = self.p_sample( |
|
model, |
|
img, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
cond_fn=cond_fn, |
|
model_kwargs=model_kwargs, |
|
) |
|
yield out |
|
img = out["sample"] |
|
|
|
def ddim_sample( |
|
self, |
|
model, |
|
x, |
|
t, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
cond_fn=None, |
|
model_kwargs=None, |
|
eta=0.0, |
|
): |
|
""" |
|
Sample x_{t-1} from the model using DDIM. |
|
|
|
Same usage as p_sample(). |
|
""" |
|
out = self.p_mean_variance( |
|
model, |
|
x, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
model_kwargs=model_kwargs, |
|
) |
|
if cond_fn is not None: |
|
out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs) |
|
|
|
|
|
|
|
eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"]) |
|
|
|
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) |
|
alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape) |
|
sigma = ( |
|
eta |
|
* th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar)) |
|
* th.sqrt(1 - alpha_bar / alpha_bar_prev) |
|
) |
|
|
|
noise = th.randn_like(x) |
|
mean_pred = ( |
|
out["pred_xstart"] * th.sqrt(alpha_bar_prev) |
|
+ th.sqrt(1 - alpha_bar_prev - sigma ** 2) * eps |
|
) |
|
nonzero_mask = ( |
|
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) |
|
) |
|
sample = mean_pred + nonzero_mask * sigma * noise |
|
return {"sample": sample, "pred_xstart": out["pred_xstart"]} |
|
|
|
def ddim_reverse_sample( |
|
self, |
|
model, |
|
x, |
|
t, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
model_kwargs=None, |
|
eta=0.0, |
|
): |
|
""" |
|
Sample x_{t+1} from the model using DDIM reverse ODE. |
|
""" |
|
assert eta == 0.0, "Reverse ODE only for deterministic path" |
|
out = self.p_mean_variance( |
|
model, |
|
x, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
model_kwargs=model_kwargs, |
|
) |
|
|
|
|
|
eps = ( |
|
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x |
|
- out["pred_xstart"] |
|
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape) |
|
alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape) |
|
|
|
|
|
mean_pred = ( |
|
out["pred_xstart"] * th.sqrt(alpha_bar_next) |
|
+ th.sqrt(1 - alpha_bar_next) * eps |
|
) |
|
|
|
return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]} |
|
|
|
def ddim_sample_loop( |
|
self, |
|
model, |
|
shape, |
|
noise=None, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
cond_fn=None, |
|
model_kwargs=None, |
|
device=None, |
|
progress=False, |
|
eta=0.0, |
|
): |
|
""" |
|
Generate samples from the model using DDIM. |
|
|
|
Same usage as p_sample_loop(). |
|
""" |
|
final = None |
|
for sample in self.ddim_sample_loop_progressive( |
|
model, |
|
shape, |
|
noise=noise, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
cond_fn=cond_fn, |
|
model_kwargs=model_kwargs, |
|
device=device, |
|
progress=progress, |
|
eta=eta, |
|
): |
|
final = sample |
|
return final["sample"] |
|
|
|
def ddim_sample_loop_progressive( |
|
self, |
|
model, |
|
shape, |
|
noise=None, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
cond_fn=None, |
|
model_kwargs=None, |
|
device=None, |
|
progress=False, |
|
eta=0.0, |
|
): |
|
""" |
|
Use DDIM to sample from the model and yield intermediate samples from |
|
each timestep of DDIM. |
|
|
|
Same usage as p_sample_loop_progressive(). |
|
""" |
|
if device is None: |
|
device = next(model.parameters()).device |
|
assert isinstance(shape, (tuple, list)) |
|
if noise is not None: |
|
img = noise |
|
else: |
|
img = th.randn(*shape, device=device) |
|
indices = list(range(self.num_timesteps))[::-1] |
|
|
|
if progress: |
|
|
|
from tqdm.auto import tqdm |
|
|
|
indices = tqdm(indices, disable=not progress) |
|
|
|
for i in indices: |
|
t = th.tensor([i] * shape[0], device=device) |
|
with th.no_grad(): |
|
out = self.ddim_sample( |
|
model, |
|
img, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
cond_fn=cond_fn, |
|
model_kwargs=model_kwargs, |
|
eta=eta, |
|
) |
|
yield out |
|
img = out["sample"] |
|
|
|
def _vb_terms_bpd( |
|
self, model, x_start, x_t, t, clip_denoised=True, model_kwargs=None |
|
): |
|
""" |
|
Get a term for the variational lower-bound. |
|
|
|
The resulting units are bits (rather than nats, as one might expect). |
|
This allows for comparison to other papers. |
|
|
|
:return: a dict with the following keys: |
|
- 'output': a shape [N] tensor of NLLs or KLs. |
|
- 'pred_xstart': the x_0 predictions. |
|
""" |
|
true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance( |
|
x_start=x_start, x_t=x_t, t=t |
|
) |
|
out = self.p_mean_variance( |
|
model, x_t, t, clip_denoised=clip_denoised, model_kwargs=model_kwargs |
|
) |
|
kl = normal_kl( |
|
true_mean, true_log_variance_clipped, out["mean"], out["log_variance"] |
|
) |
|
kl = mean_flat(kl) / np.log(2.0) |
|
|
|
decoder_nll = -discretized_gaussian_log_likelihood( |
|
x_start, means=out["mean"], log_scales=0.5 * out["log_variance"] |
|
) |
|
assert decoder_nll.shape == x_start.shape |
|
decoder_nll = mean_flat(decoder_nll) / np.log(2.0) |
|
|
|
|
|
|
|
output = th.where((t == 0), decoder_nll, kl) |
|
return {"output": output, "pred_xstart": out["pred_xstart"]} |
|
|
|
def training_losses(self, model, x_start, t, model_kwargs=None, noise=None): |
|
""" |
|
Compute training losses for a single timestep. |
|
|
|
:param model: the model to evaluate loss on. |
|
:param x_start: the [N x C x ...] tensor of inputs. |
|
:param t: a batch of timestep indices. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
:param noise: if specified, the specific Gaussian noise to try to remove. |
|
:return: a dict with the key "loss" containing a tensor of shape [N]. |
|
Some mean or variance settings may also have other keys. |
|
""" |
|
if model_kwargs is None: |
|
model_kwargs = {} |
|
if noise is None: |
|
noise = th.randn_like(x_start) |
|
x_t = self.q_sample(x_start, t, noise=noise) |
|
|
|
terms = {} |
|
|
|
if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL: |
|
|
|
terms["loss"] = self._vb_terms_bpd( |
|
model=model, |
|
x_start=x_start, |
|
x_t=x_t, |
|
t=t, |
|
clip_denoised=False, |
|
model_kwargs=model_kwargs, |
|
)["output"] |
|
if self.loss_type == LossType.RESCALED_KL: |
|
terms["loss"] *= self.num_timesteps |
|
elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE: |
|
model_outputs = model(x_t, self._scale_timesteps(t), **model_kwargs) |
|
if isinstance(model_outputs, tuple): |
|
model_output = model_outputs[0] |
|
terms['extra_outputs'] = model_outputs[1:] |
|
else: |
|
model_output = model_outputs |
|
|
|
if self.model_var_type in [ |
|
ModelVarType.LEARNED, |
|
ModelVarType.LEARNED_RANGE, |
|
]: |
|
B, C = x_t.shape[:2] |
|
assert model_output.shape == (B, C * 2, *x_t.shape[2:]) |
|
model_output, model_var_values = th.split(model_output, C, dim=1) |
|
|
|
|
|
frozen_out = th.cat([model_output.detach(), model_var_values], dim=1) |
|
terms["vb"] = self._vb_terms_bpd( |
|
model=lambda *args, r=frozen_out: r, |
|
x_start=x_start, |
|
x_t=x_t, |
|
t=t, |
|
clip_denoised=False, |
|
)["output"] |
|
if self.loss_type == LossType.RESCALED_MSE: |
|
|
|
|
|
terms["vb"] *= self.num_timesteps / 1000.0 |
|
|
|
if self.model_mean_type == ModelMeanType.PREVIOUS_X: |
|
target = self.q_posterior_mean_variance( |
|
x_start=x_start, x_t=x_t, t=t |
|
)[0] |
|
x_start_pred = torch.zeros(x_start) |
|
elif self.model_mean_type == ModelMeanType.START_X: |
|
target = x_start |
|
x_start_pred = model_output |
|
elif self.model_mean_type == ModelMeanType.EPSILON: |
|
target = noise |
|
x_start_pred = self._predict_xstart_from_eps(x_t, t, model_output) |
|
else: |
|
raise NotImplementedError(self.model_mean_type) |
|
assert model_output.shape == target.shape == x_start.shape |
|
terms["mse"] = mean_flat((target - model_output) ** 2) |
|
terms["x_start_predicted"] = x_start_pred |
|
if "vb" in terms: |
|
terms["loss"] = terms["mse"] + terms["vb"] |
|
else: |
|
terms["loss"] = terms["mse"] |
|
else: |
|
raise NotImplementedError(self.loss_type) |
|
|
|
return terms |
|
|
|
def autoregressive_training_losses(self, model, x_start, t, model_output_keys, gd_out_key, model_kwargs=None, noise=None): |
|
""" |
|
Compute training losses for a single timestep. |
|
|
|
:param model: the model to evaluate loss on. |
|
:param x_start: the [N x C x ...] tensor of inputs. |
|
:param t: a batch of timestep indices. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
:param noise: if specified, the specific Gaussian noise to try to remove. |
|
:return: a dict with the key "loss" containing a tensor of shape [N]. |
|
Some mean or variance settings may also have other keys. |
|
""" |
|
if model_kwargs is None: |
|
model_kwargs = {} |
|
if noise is None: |
|
noise = th.randn_like(x_start) |
|
x_t = self.q_sample(x_start, t, noise=noise) |
|
terms = {} |
|
if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL: |
|
assert False |
|
elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE: |
|
model_outputs = model(x_t, x_start, self._scale_timesteps(t), **model_kwargs) |
|
terms.update({k: o for k, o in zip(model_output_keys, model_outputs)}) |
|
model_output = terms[gd_out_key] |
|
if self.model_var_type in [ |
|
ModelVarType.LEARNED, |
|
ModelVarType.LEARNED_RANGE, |
|
]: |
|
B, C = x_t.shape[:2] |
|
assert model_output.shape == (B, C, 2, *x_t.shape[2:]) |
|
model_output, model_var_values = model_output[:, :, 0], model_output[:, :, 1] |
|
|
|
|
|
frozen_out = th.cat([model_output.detach(), model_var_values], dim=1) |
|
terms["vb"] = self._vb_terms_bpd( |
|
model=lambda *args, r=frozen_out: r, |
|
x_start=x_start, |
|
x_t=x_t, |
|
t=t, |
|
clip_denoised=False, |
|
)["output"] |
|
if self.loss_type == LossType.RESCALED_MSE: |
|
|
|
|
|
terms["vb"] *= self.num_timesteps / 1000.0 |
|
|
|
if self.model_mean_type == ModelMeanType.PREVIOUS_X: |
|
target = self.q_posterior_mean_variance( |
|
x_start=x_start, x_t=x_t, t=t |
|
)[0] |
|
x_start_pred = torch.zeros(x_start) |
|
elif self.model_mean_type == ModelMeanType.START_X: |
|
target = x_start |
|
x_start_pred = model_output |
|
elif self.model_mean_type == ModelMeanType.EPSILON: |
|
target = noise |
|
x_start_pred = self._predict_xstart_from_eps(x_t, t, model_output) |
|
else: |
|
raise NotImplementedError(self.model_mean_type) |
|
assert model_output.shape == target.shape == x_start.shape |
|
terms["mse"] = mean_flat((target - model_output) ** 2) |
|
terms["x_start_predicted"] = x_start_pred |
|
if "vb" in terms: |
|
terms["loss"] = terms["mse"] + terms["vb"] |
|
else: |
|
terms["loss"] = terms["mse"] |
|
else: |
|
raise NotImplementedError(self.loss_type) |
|
|
|
return terms |
|
|
|
def _prior_bpd(self, x_start): |
|
""" |
|
Get the prior KL term for the variational lower-bound, measured in |
|
bits-per-dim. |
|
|
|
This term can't be optimized, as it only depends on the encoder. |
|
|
|
:param x_start: the [N x C x ...] tensor of inputs. |
|
:return: a batch of [N] KL values (in bits), one per batch element. |
|
""" |
|
batch_size = x_start.shape[0] |
|
t = th.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) |
|
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) |
|
kl_prior = normal_kl( |
|
mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0 |
|
) |
|
return mean_flat(kl_prior) / np.log(2.0) |
|
|
|
def calc_bpd_loop(self, model, x_start, clip_denoised=True, model_kwargs=None): |
|
""" |
|
Compute the entire variational lower-bound, measured in bits-per-dim, |
|
as well as other related quantities. |
|
|
|
:param model: the model to evaluate loss on. |
|
:param x_start: the [N x C x ...] tensor of inputs. |
|
:param clip_denoised: if True, clip denoised samples. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
|
|
:return: a dict containing the following keys: |
|
- total_bpd: the total variational lower-bound, per batch element. |
|
- prior_bpd: the prior term in the lower-bound. |
|
- vb: an [N x T] tensor of terms in the lower-bound. |
|
- xstart_mse: an [N x T] tensor of x_0 MSEs for each timestep. |
|
- mse: an [N x T] tensor of epsilon MSEs for each timestep. |
|
""" |
|
device = x_start.device |
|
batch_size = x_start.shape[0] |
|
|
|
vb = [] |
|
xstart_mse = [] |
|
mse = [] |
|
for t in list(range(self.num_timesteps))[::-1]: |
|
t_batch = th.tensor([t] * batch_size, device=device) |
|
noise = th.randn_like(x_start) |
|
x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise) |
|
|
|
with th.no_grad(): |
|
out = self._vb_terms_bpd( |
|
model, |
|
x_start=x_start, |
|
x_t=x_t, |
|
t=t_batch, |
|
clip_denoised=clip_denoised, |
|
model_kwargs=model_kwargs, |
|
) |
|
vb.append(out["output"]) |
|
xstart_mse.append(mean_flat((out["pred_xstart"] - x_start) ** 2)) |
|
eps = self._predict_eps_from_xstart(x_t, t_batch, out["pred_xstart"]) |
|
mse.append(mean_flat((eps - noise) ** 2)) |
|
|
|
vb = th.stack(vb, dim=1) |
|
xstart_mse = th.stack(xstart_mse, dim=1) |
|
mse = th.stack(mse, dim=1) |
|
|
|
prior_bpd = self._prior_bpd(x_start) |
|
total_bpd = vb.sum(dim=1) + prior_bpd |
|
return { |
|
"total_bpd": total_bpd, |
|
"prior_bpd": prior_bpd, |
|
"vb": vb, |
|
"xstart_mse": xstart_mse, |
|
"mse": mse, |
|
} |
|
|
|
|
|
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps): |
|
""" |
|
Get a pre-defined beta schedule for the given name. |
|
|
|
The beta schedule library consists of beta schedules which remain similar |
|
in the limit of num_diffusion_timesteps. |
|
Beta schedules may be added, but should not be removed or changed once |
|
they are committed to maintain backwards compatibility. |
|
""" |
|
if schedule_name == "linear": |
|
|
|
|
|
scale = 1000 / num_diffusion_timesteps |
|
beta_start = scale * 0.0001 |
|
beta_end = scale * 0.02 |
|
return np.linspace( |
|
beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64 |
|
) |
|
elif schedule_name == "cosine": |
|
return betas_for_alpha_bar( |
|
num_diffusion_timesteps, |
|
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, |
|
) |
|
else: |
|
raise NotImplementedError(f"unknown beta schedule: {schedule_name}") |
|
|
|
|
|
class SpacedDiffusion(GaussianDiffusion): |
|
""" |
|
A diffusion process which can skip steps in a base diffusion process. |
|
|
|
:param use_timesteps: a collection (sequence or set) of timesteps from the |
|
original diffusion process to retain. |
|
:param kwargs: the kwargs to create the base diffusion process. |
|
""" |
|
|
|
def __init__(self, use_timesteps, **kwargs): |
|
self.use_timesteps = set(use_timesteps) |
|
self.timestep_map = [] |
|
self.original_num_steps = len(kwargs["betas"]) |
|
|
|
base_diffusion = GaussianDiffusion(**kwargs) |
|
last_alpha_cumprod = 1.0 |
|
new_betas = [] |
|
for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod): |
|
if i in self.use_timesteps: |
|
new_betas.append(1 - alpha_cumprod / last_alpha_cumprod) |
|
last_alpha_cumprod = alpha_cumprod |
|
self.timestep_map.append(i) |
|
kwargs["betas"] = np.array(new_betas) |
|
super().__init__(**kwargs) |
|
|
|
def p_mean_variance( |
|
self, model, *args, **kwargs |
|
): |
|
return super().p_mean_variance(self._wrap_model(model), *args, **kwargs) |
|
|
|
def training_losses( |
|
self, model, *args, **kwargs |
|
): |
|
return super().training_losses(self._wrap_model(model), *args, **kwargs) |
|
|
|
def autoregressive_training_losses( |
|
self, model, *args, **kwargs |
|
): |
|
return super().autoregressive_training_losses(self._wrap_model(model, True), *args, **kwargs) |
|
|
|
def condition_mean(self, cond_fn, *args, **kwargs): |
|
return super().condition_mean(self._wrap_model(cond_fn), *args, **kwargs) |
|
|
|
def condition_score(self, cond_fn, *args, **kwargs): |
|
return super().condition_score(self._wrap_model(cond_fn), *args, **kwargs) |
|
|
|
def _wrap_model(self, model, autoregressive=False): |
|
if isinstance(model, _WrappedModel) or isinstance(model, _WrappedAutoregressiveModel): |
|
return model |
|
mod = _WrappedAutoregressiveModel if autoregressive else _WrappedModel |
|
return mod( |
|
model, self.timestep_map, self.rescale_timesteps, self.original_num_steps |
|
) |
|
|
|
def _scale_timesteps(self, t): |
|
|
|
return t |
|
|
|
|
|
def space_timesteps(num_timesteps, section_counts): |
|
""" |
|
Create a list of timesteps to use from an original diffusion process, |
|
given the number of timesteps we want to take from equally-sized portions |
|
of the original process. |
|
|
|
For example, if there's 300 timesteps and the section counts are [10,15,20] |
|
then the first 100 timesteps are strided to be 10 timesteps, the second 100 |
|
are strided to be 15 timesteps, and the final 100 are strided to be 20. |
|
|
|
If the stride is a string starting with "ddim", then the fixed striding |
|
from the DDIM paper is used, and only one section is allowed. |
|
|
|
:param num_timesteps: the number of diffusion steps in the original |
|
process to divide up. |
|
:param section_counts: either a list of numbers, or a string containing |
|
comma-separated numbers, indicating the step count |
|
per section. As a special case, use "ddimN" where N |
|
is a number of steps to use the striding from the |
|
DDIM paper. |
|
:return: a set of diffusion steps from the original process to use. |
|
""" |
|
if isinstance(section_counts, str): |
|
if section_counts.startswith("ddim"): |
|
desired_count = int(section_counts[len("ddim") :]) |
|
for i in range(1, num_timesteps): |
|
if len(range(0, num_timesteps, i)) == desired_count: |
|
return set(range(0, num_timesteps, i)) |
|
raise ValueError( |
|
f"cannot create exactly {num_timesteps} steps with an integer stride" |
|
) |
|
section_counts = [int(x) for x in section_counts.split(",")] |
|
size_per = num_timesteps // len(section_counts) |
|
extra = num_timesteps % len(section_counts) |
|
start_idx = 0 |
|
all_steps = [] |
|
for i, section_count in enumerate(section_counts): |
|
size = size_per + (1 if i < extra else 0) |
|
if size < section_count: |
|
raise ValueError( |
|
f"cannot divide section of {size} steps into {section_count}" |
|
) |
|
if section_count <= 1: |
|
frac_stride = 1 |
|
else: |
|
frac_stride = (size - 1) / (section_count - 1) |
|
cur_idx = 0.0 |
|
taken_steps = [] |
|
for _ in range(section_count): |
|
taken_steps.append(start_idx + round(cur_idx)) |
|
cur_idx += frac_stride |
|
all_steps += taken_steps |
|
start_idx += size |
|
return set(all_steps) |
|
|
|
|
|
class _WrappedModel: |
|
def __init__(self, model, timestep_map, rescale_timesteps, original_num_steps): |
|
self.model = model |
|
self.timestep_map = timestep_map |
|
self.rescale_timesteps = rescale_timesteps |
|
self.original_num_steps = original_num_steps |
|
|
|
def __call__(self, x, ts, **kwargs): |
|
map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype) |
|
new_ts = map_tensor[ts] |
|
if self.rescale_timesteps: |
|
new_ts = new_ts.float() * (1000.0 / self.original_num_steps) |
|
return self.model(x, new_ts, **kwargs) |
|
|
|
|
|
class _WrappedAutoregressiveModel: |
|
def __init__(self, model, timestep_map, rescale_timesteps, original_num_steps): |
|
self.model = model |
|
self.timestep_map = timestep_map |
|
self.rescale_timesteps = rescale_timesteps |
|
self.original_num_steps = original_num_steps |
|
|
|
def __call__(self, x, x0, ts, **kwargs): |
|
map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype) |
|
new_ts = map_tensor[ts] |
|
if self.rescale_timesteps: |
|
new_ts = new_ts.float() * (1000.0 / self.original_num_steps) |
|
return self.model(x, x0, new_ts, **kwargs) |
|
|
|
def _extract_into_tensor(arr, timesteps, broadcast_shape): |
|
""" |
|
Extract values from a 1-D numpy array for a batch of indices. |
|
|
|
:param arr: the 1-D numpy array. |
|
:param timesteps: a tensor of indices into the array to extract. |
|
:param broadcast_shape: a larger shape of K dimensions with the batch |
|
dimension equal to the length of timesteps. |
|
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. |
|
""" |
|
res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float() |
|
while len(res.shape) < len(broadcast_shape): |
|
res = res[..., None] |
|
return res.expand(broadcast_shape) |