|
import argparse |
|
import os |
|
|
|
import torchaudio |
|
|
|
from api import TextToSpeech |
|
from utils.audio import load_audio, get_voices |
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.") |
|
parser.add_argument('--voice', type=str, help='Selects the voice to use for generation. See options in voices/ directory (and add your own!) ' |
|
'Use the & character to join two voices together. Use a comma to perform inference on multiple voices.', default='patrick_stewart') |
|
parser.add_argument('--preset', type=str, help='Which voice preset to use.', default='standard') |
|
parser.add_argument('--voice_diversity_intelligibility_slider', type=float, |
|
help='How to balance vocal diversity with the quality/intelligibility of the spoken text. 0 means highly diverse voice (not recommended), 1 means maximize intellibility', |
|
default=.5) |
|
parser.add_argument('--output_path', type=str, help='Where to store outputs.', default='results/') |
|
args = parser.parse_args() |
|
os.makedirs(args.output_path, exist_ok=True) |
|
|
|
tts = TextToSpeech() |
|
|
|
voices = get_voices() |
|
selected_voices = args.voice.split(',') |
|
for voice in selected_voices: |
|
cond_paths = voices[voice] |
|
conds = [] |
|
for cond_path in cond_paths: |
|
c = load_audio(cond_path, 22050) |
|
conds.append(c) |
|
gen = tts.tts_with_preset(args.text, conds, preset=args.preset, clvp_cvvp_slider=args.voice_diversity_intelligibility_slider) |
|
torchaudio.save(os.path.join(args.output_path, f'{voice}.wav'), gen.squeeze(0).cpu(), 24000) |
|
|
|
|