|
import math |
|
import random |
|
from abc import abstractmethod |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch import autocast |
|
|
|
from models.arch_util import normalization, AttentionBlock |
|
|
|
|
|
def is_latent(t): |
|
return t.dtype == torch.float |
|
|
|
|
|
def is_sequence(t): |
|
return t.dtype == torch.long |
|
|
|
|
|
def timestep_embedding(timesteps, dim, max_period=10000): |
|
""" |
|
Create sinusoidal timestep embeddings. |
|
|
|
:param timesteps: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param dim: the dimension of the output. |
|
:param max_period: controls the minimum frequency of the embeddings. |
|
:return: an [N x dim] Tensor of positional embeddings. |
|
""" |
|
half = dim // 2 |
|
freqs = torch.exp( |
|
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half |
|
).to(device=timesteps.device) |
|
args = timesteps[:, None].float() * freqs[None] |
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if dim % 2: |
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) |
|
return embedding |
|
|
|
|
|
class TimestepBlock(nn.Module): |
|
@abstractmethod |
|
def forward(self, x, emb): |
|
""" |
|
Apply the module to `x` given `emb` timestep embeddings. |
|
""" |
|
|
|
|
|
class TimestepEmbedSequential(nn.Sequential, TimestepBlock): |
|
def forward(self, x, emb): |
|
for layer in self: |
|
if isinstance(layer, TimestepBlock): |
|
x = layer(x, emb) |
|
else: |
|
x = layer(x) |
|
return x |
|
|
|
|
|
class ResBlock(TimestepBlock): |
|
def __init__( |
|
self, |
|
channels, |
|
emb_channels, |
|
dropout, |
|
out_channels=None, |
|
dims=2, |
|
kernel_size=3, |
|
efficient_config=True, |
|
use_scale_shift_norm=False, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.emb_channels = emb_channels |
|
self.dropout = dropout |
|
self.out_channels = out_channels or channels |
|
self.use_scale_shift_norm = use_scale_shift_norm |
|
padding = {1: 0, 3: 1, 5: 2}[kernel_size] |
|
eff_kernel = 1 if efficient_config else 3 |
|
eff_padding = 0 if efficient_config else 1 |
|
|
|
self.in_layers = nn.Sequential( |
|
normalization(channels), |
|
nn.SiLU(), |
|
nn.Conv1d(channels, self.out_channels, eff_kernel, padding=eff_padding), |
|
) |
|
|
|
self.emb_layers = nn.Sequential( |
|
nn.SiLU(), |
|
nn.Linear( |
|
emb_channels, |
|
2 * self.out_channels if use_scale_shift_norm else self.out_channels, |
|
), |
|
) |
|
self.out_layers = nn.Sequential( |
|
normalization(self.out_channels), |
|
nn.SiLU(), |
|
nn.Dropout(p=dropout), |
|
nn.Conv1d(self.out_channels, self.out_channels, kernel_size, padding=padding), |
|
) |
|
|
|
if self.out_channels == channels: |
|
self.skip_connection = nn.Identity() |
|
else: |
|
self.skip_connection = nn.Conv1d(channels, self.out_channels, eff_kernel, padding=eff_padding) |
|
|
|
def forward(self, x, emb): |
|
h = self.in_layers(x) |
|
emb_out = self.emb_layers(emb).type(h.dtype) |
|
while len(emb_out.shape) < len(h.shape): |
|
emb_out = emb_out[..., None] |
|
if self.use_scale_shift_norm: |
|
out_norm, out_rest = self.out_layers[0], self.out_layers[1:] |
|
scale, shift = torch.chunk(emb_out, 2, dim=1) |
|
h = out_norm(h) * (1 + scale) + shift |
|
h = out_rest(h) |
|
else: |
|
h = h + emb_out |
|
h = self.out_layers(h) |
|
return self.skip_connection(x) + h |
|
|
|
|
|
class DiffusionLayer(TimestepBlock): |
|
def __init__(self, model_channels, dropout, num_heads): |
|
super().__init__() |
|
self.resblk = ResBlock(model_channels, model_channels, dropout, model_channels, dims=1, use_scale_shift_norm=True) |
|
self.attn = AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True) |
|
|
|
def forward(self, x, time_emb): |
|
y = self.resblk(x, time_emb) |
|
return self.attn(y) |
|
|
|
|
|
class DiffusionTts(nn.Module): |
|
def __init__( |
|
self, |
|
model_channels=512, |
|
num_layers=8, |
|
in_channels=100, |
|
in_latent_channels=512, |
|
in_tokens=8193, |
|
out_channels=200, |
|
dropout=0, |
|
use_fp16=False, |
|
num_heads=16, |
|
|
|
layer_drop=.1, |
|
unconditioned_percentage=.1, |
|
): |
|
super().__init__() |
|
|
|
self.in_channels = in_channels |
|
self.model_channels = model_channels |
|
self.out_channels = out_channels |
|
self.dropout = dropout |
|
self.num_heads = num_heads |
|
self.unconditioned_percentage = unconditioned_percentage |
|
self.enable_fp16 = use_fp16 |
|
self.layer_drop = layer_drop |
|
|
|
self.inp_block = nn.Conv1d(in_channels, model_channels, 3, 1, 1) |
|
self.time_embed = nn.Sequential( |
|
nn.Linear(model_channels, model_channels), |
|
nn.SiLU(), |
|
nn.Linear(model_channels, model_channels), |
|
) |
|
|
|
|
|
|
|
|
|
|
|
self.code_embedding = nn.Embedding(in_tokens, model_channels) |
|
self.code_converter = nn.Sequential( |
|
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True), |
|
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True), |
|
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True), |
|
) |
|
self.code_norm = normalization(model_channels) |
|
self.latent_converter = nn.Conv1d(in_latent_channels, model_channels, 1) |
|
self.contextual_embedder = nn.Sequential(nn.Conv1d(in_channels,model_channels,3,padding=1,stride=2), |
|
nn.Conv1d(model_channels, model_channels*2,3,padding=1,stride=2), |
|
AttentionBlock(model_channels*2, num_heads, relative_pos_embeddings=True, do_checkpoint=False), |
|
AttentionBlock(model_channels*2, num_heads, relative_pos_embeddings=True, do_checkpoint=False), |
|
AttentionBlock(model_channels*2, num_heads, relative_pos_embeddings=True, do_checkpoint=False), |
|
AttentionBlock(model_channels*2, num_heads, relative_pos_embeddings=True, do_checkpoint=False), |
|
AttentionBlock(model_channels*2, num_heads, relative_pos_embeddings=True, do_checkpoint=False)) |
|
self.unconditioned_embedding = nn.Parameter(torch.randn(1,model_channels,1)) |
|
self.conditioning_timestep_integrator = TimestepEmbedSequential( |
|
DiffusionLayer(model_channels, dropout, num_heads), |
|
DiffusionLayer(model_channels, dropout, num_heads), |
|
DiffusionLayer(model_channels, dropout, num_heads), |
|
) |
|
self.integrating_conv = nn.Conv1d(model_channels*2, model_channels, kernel_size=1) |
|
self.mel_head = nn.Conv1d(model_channels, in_channels, kernel_size=3, padding=1) |
|
|
|
self.layers = nn.ModuleList([DiffusionLayer(model_channels, dropout, num_heads) for _ in range(num_layers)] + |
|
[ResBlock(model_channels, model_channels, dropout, dims=1, use_scale_shift_norm=True) for _ in range(3)]) |
|
|
|
self.out = nn.Sequential( |
|
normalization(model_channels), |
|
nn.SiLU(), |
|
nn.Conv1d(model_channels, out_channels, 3, padding=1), |
|
) |
|
|
|
def get_grad_norm_parameter_groups(self): |
|
groups = { |
|
'minicoder': list(self.contextual_embedder.parameters()), |
|
'layers': list(self.layers.parameters()), |
|
'code_converters': list(self.code_embedding.parameters()) + list(self.code_converter.parameters()) + list(self.latent_converter.parameters()) + list(self.latent_converter.parameters()), |
|
'timestep_integrator': list(self.conditioning_timestep_integrator.parameters()) + list(self.integrating_conv.parameters()), |
|
'time_embed': list(self.time_embed.parameters()), |
|
} |
|
return groups |
|
|
|
def timestep_independent(self, aligned_conditioning, conditioning_input, return_code_pred): |
|
|
|
if is_latent(aligned_conditioning): |
|
aligned_conditioning = aligned_conditioning.permute(0, 2, 1) |
|
|
|
|
|
speech_conditioning_input = conditioning_input.unsqueeze(1) if len( |
|
conditioning_input.shape) == 3 else conditioning_input |
|
conds = [] |
|
for j in range(speech_conditioning_input.shape[1]): |
|
conds.append(self.contextual_embedder(speech_conditioning_input[:, j])) |
|
conds = torch.cat(conds, dim=-1) |
|
cond_emb = conds.mean(dim=-1) |
|
cond_scale, cond_shift = torch.chunk(cond_emb, 2, dim=1) |
|
if is_latent(aligned_conditioning): |
|
code_emb = self.latent_converter(aligned_conditioning) |
|
else: |
|
code_emb = self.code_embedding(aligned_conditioning).permute(0, 2, 1) |
|
code_emb = self.code_converter(code_emb) |
|
code_emb = self.code_norm(code_emb) * (1 + cond_scale.unsqueeze(-1)) + cond_shift.unsqueeze(-1) |
|
|
|
unconditioned_batches = torch.zeros((code_emb.shape[0], 1, 1), device=code_emb.device) |
|
|
|
if self.training and self.unconditioned_percentage > 0: |
|
unconditioned_batches = torch.rand((code_emb.shape[0], 1, 1), |
|
device=code_emb.device) < self.unconditioned_percentage |
|
code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(aligned_conditioning.shape[0], 1, 1), |
|
code_emb) |
|
expanded_code_emb = F.interpolate(code_emb, size=aligned_conditioning.shape[-1]*4, mode='nearest') |
|
|
|
if not return_code_pred: |
|
return expanded_code_emb |
|
else: |
|
mel_pred = self.mel_head(expanded_code_emb) |
|
|
|
mel_pred = mel_pred * unconditioned_batches.logical_not() |
|
return expanded_code_emb, mel_pred |
|
|
|
|
|
def forward(self, x, timesteps, aligned_conditioning=None, conditioning_input=None, precomputed_aligned_embeddings=None, conditioning_free=False, return_code_pred=False): |
|
""" |
|
Apply the model to an input batch. |
|
|
|
:param x: an [N x C x ...] Tensor of inputs. |
|
:param timesteps: a 1-D batch of timesteps. |
|
:param aligned_conditioning: an aligned latent or sequence of tokens providing useful data about the sample to be produced. |
|
:param conditioning_input: a full-resolution audio clip that is used as a reference to the style you want decoded. |
|
:param precomputed_aligned_embeddings: Embeddings returned from self.timestep_independent() |
|
:param conditioning_free: When set, all conditioning inputs (including tokens and conditioning_input) will not be considered. |
|
:return: an [N x C x ...] Tensor of outputs. |
|
""" |
|
assert precomputed_aligned_embeddings is not None or (aligned_conditioning is not None and conditioning_input is not None) |
|
assert not (return_code_pred and precomputed_aligned_embeddings is not None) |
|
|
|
unused_params = [] |
|
if conditioning_free: |
|
code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, x.shape[-1]) |
|
unused_params.extend(list(self.code_converter.parameters()) + list(self.code_embedding.parameters())) |
|
unused_params.extend(list(self.latent_converter.parameters())) |
|
else: |
|
if precomputed_aligned_embeddings is not None: |
|
code_emb = precomputed_aligned_embeddings |
|
else: |
|
code_emb, mel_pred = self.timestep_independent(aligned_conditioning, conditioning_input, True) |
|
if is_latent(aligned_conditioning): |
|
unused_params.extend(list(self.code_converter.parameters()) + list(self.code_embedding.parameters())) |
|
else: |
|
unused_params.extend(list(self.latent_converter.parameters())) |
|
unused_params.append(self.unconditioned_embedding) |
|
|
|
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) |
|
code_emb = self.conditioning_timestep_integrator(code_emb, time_emb) |
|
x = self.inp_block(x) |
|
x = torch.cat([x, code_emb], dim=1) |
|
x = self.integrating_conv(x) |
|
for i, lyr in enumerate(self.layers): |
|
|
|
if self.training and self.layer_drop > 0 and i != 0 and i != (len(self.layers)-1) and random.random() < self.layer_drop: |
|
unused_params.extend(list(lyr.parameters())) |
|
else: |
|
|
|
with autocast(x.device.type, enabled=self.enable_fp16 and i != 0): |
|
x = lyr(x, time_emb) |
|
|
|
x = x.float() |
|
out = self.out(x) |
|
|
|
|
|
extraneous_addition = 0 |
|
for p in unused_params: |
|
extraneous_addition = extraneous_addition + p.mean() |
|
out = out + extraneous_addition * 0 |
|
|
|
if return_code_pred: |
|
return out, mel_pred |
|
return out |
|
|
|
|
|
if __name__ == '__main__': |
|
clip = torch.randn(2, 100, 400) |
|
aligned_latent = torch.randn(2,388,512) |
|
aligned_sequence = torch.randint(0,8192,(2,100)) |
|
cond = torch.randn(2, 100, 400) |
|
ts = torch.LongTensor([600, 600]) |
|
model = DiffusionTts(512, layer_drop=.3, unconditioned_percentage=.5) |
|
|
|
|
|
|
|
o = model(clip, ts, aligned_sequence, cond) |
|
|
|
|