|
import functools |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from transformers import GPT2PreTrainedModel, GPT2Config |
|
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions |
|
from x_transformers import TransformerWrapper, Encoder, Decoder |
|
|
|
from models.arch_util import AttentionBlock |
|
|
|
|
|
class InferenceModel(GPT2PreTrainedModel): |
|
""" |
|
Implementation of GPT2PreTrainedModel from transformers, which allows us to use their generation library with |
|
this transformer. |
|
""" |
|
def __init__(self, model): |
|
super().__init__(GPT2Config()) |
|
self.transformer = model |
|
self.context = None |
|
|
|
def parallelize(self, device_map=None): |
|
|
|
pass |
|
|
|
def deparallelize(self): |
|
|
|
pass |
|
|
|
def get_output_embeddings(self): |
|
assert False, "Unsupported operation." |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
assert False, "Unsupported operation." |
|
|
|
def store_context(self, context): |
|
self.context = context |
|
|
|
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs): |
|
token_type_ids = kwargs.get("token_type_ids", None) |
|
|
|
if past: |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids[:, -1].unsqueeze(-1) |
|
|
|
attention_mask = kwargs.get("attention_mask", None) |
|
position_ids = kwargs.get("position_ids", None) |
|
|
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past: |
|
position_ids = position_ids[:, -1].unsqueeze(-1) |
|
else: |
|
position_ids = None |
|
return { |
|
"input_ids": input_ids, |
|
"past_key_values": past, |
|
"use_cache": kwargs.get("use_cache"), |
|
"position_ids": position_ids, |
|
"attention_mask": attention_mask, |
|
"token_type_ids": token_type_ids, |
|
} |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
past_key_values=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
labels=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
assert self.context is not None |
|
assert inputs_embeds is None |
|
assert labels is None |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
hidden_states = self.transformer.decoder(input_ids, context=self.context, return_embeddings=True) |
|
logits = self.transformer.decoder.transformer.to_logits(hidden_states) |
|
|
|
if not return_dict: |
|
return (logits, ) |
|
|
|
return CausalLMOutputWithCrossAttentions( |
|
loss=None, |
|
logits=logits, |
|
past_key_values=None, |
|
hidden_states=hidden_states, |
|
attentions=None, |
|
cross_attentions=None, |
|
) |
|
|
|
@staticmethod |
|
def _reorder_cache(past, beam_idx): |
|
""" |
|
This function is used to re-order the :obj:`past_key_values` cache if |
|
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is |
|
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step. |
|
""" |
|
return tuple( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) |
|
for layer_past in past |
|
) |
|
|
|
|
|
class ResBlock(nn.Module): |
|
""" |
|
Basic residual convolutional block that uses GroupNorm. |
|
""" |
|
def __init__(self, chan): |
|
super().__init__() |
|
self.net = nn.Sequential( |
|
nn.Conv1d(chan, chan, kernel_size=3, padding=1), |
|
nn.GroupNorm(chan//8, chan), |
|
nn.ReLU(), |
|
nn.Conv1d(chan, chan, kernel_size=3, padding=1), |
|
nn.GroupNorm(chan//8, chan) |
|
) |
|
|
|
def forward(self, x): |
|
return F.relu(self.net(x) + x) |
|
|
|
|
|
class ConditioningEncoder(nn.Module): |
|
def __init__(self, |
|
spec_dim, |
|
embedding_dim, |
|
attn_blocks=6, |
|
num_attn_heads=4, |
|
do_checkpointing=False): |
|
super().__init__() |
|
attn = [] |
|
self.init = nn.Sequential(nn.Conv1d(spec_dim, embedding_dim//4, kernel_size=5, padding=2), |
|
nn.Conv1d(embedding_dim//4, embedding_dim//2, kernel_size=3, padding=1, stride=2), |
|
ResBlock(embedding_dim//2), |
|
nn.Conv1d(embedding_dim//2, embedding_dim, kernel_size=3, padding=1, stride=2)) |
|
for a in range(attn_blocks): |
|
attn.append(AttentionBlock(embedding_dim, num_attn_heads, do_checkpoint=do_checkpointing)) |
|
self.attn = nn.Sequential(*attn) |
|
self.dim = embedding_dim |
|
|
|
def forward(self, x): |
|
h = self.init(x) |
|
h = self.attn(h) |
|
return h.mean(dim=2) |
|
|
|
|
|
class CheckpointedLayer(nn.Module): |
|
""" |
|
Wraps a module. When forward() is called, passes kwargs that require_grad through torch.checkpoint() and bypasses |
|
checkpoint for all other args. |
|
""" |
|
def __init__(self, wrap): |
|
super().__init__() |
|
self.wrap = wrap |
|
|
|
def forward(self, x, *args, **kwargs): |
|
for k, v in kwargs.items(): |
|
assert not (isinstance(v, torch.Tensor) and v.requires_grad) |
|
partial = functools.partial(self.wrap, **kwargs) |
|
return torch.utils.checkpoint.checkpoint(partial, x, *args) |
|
|
|
|
|
class CheckpointedXTransformerWrapper(nn.Module): |
|
""" |
|
Wraps a TransformerWrapper and applies CheckpointedLayer to each layer. |
|
""" |
|
def __init__(self, checkpoint=True, **xtransformer_kwargs): |
|
super().__init__() |
|
self.transformer = TransformerWrapper(**xtransformer_kwargs) |
|
|
|
if not checkpoint: |
|
return |
|
for i in range(len(self.transformer.attn_layers.layers)): |
|
n, b, r = self.transformer.attn_layers.layers[i] |
|
self.transformer.attn_layers.layers[i] = nn.ModuleList([n, CheckpointedLayer(b), r]) |
|
|
|
def forward(self, x, **kwargs): |
|
return self.transformer(x, **kwargs) |
|
|
|
|
|
class AutoregressiveCodegen(nn.Module): |
|
def __init__(self, model_dim, depth, num_text_tokens=256, num_mel_tokens=8194, max_text_tokens=4000, |
|
max_mel_tokens=4000, dropout=.1): |
|
super().__init__() |
|
|
|
self.START_TOKEN=8192 |
|
self.STOP_TOKEN=8193 |
|
self.max_mel_tokens = max_mel_tokens |
|
self.minicoder = ConditioningEncoder(80, model_dim, do_checkpointing=False) |
|
self.encoder = CheckpointedXTransformerWrapper( |
|
num_tokens=num_text_tokens, |
|
max_seq_len=max_text_tokens, |
|
attn_layers = Encoder( |
|
depth=depth//2, |
|
heads=model_dim//64, |
|
dim=model_dim, |
|
attn_dropout=dropout, |
|
ff_dropout=dropout, |
|
use_rmsnorm=True, |
|
ff_glu=True, |
|
ff_mult=1, |
|
rotary_pos_emb=True, |
|
rel_pos_bias=True, |
|
)) |
|
self.decoder = CheckpointedXTransformerWrapper( |
|
num_tokens=num_mel_tokens, |
|
max_seq_len=max_mel_tokens, |
|
attn_layers=Decoder( |
|
depth=depth, |
|
heads=model_dim//64, |
|
dim=model_dim, |
|
attn_dropout=dropout, |
|
ff_dropout=dropout, |
|
use_rmsnorm=True, |
|
ff_glu=True, |
|
ff_mult=1, |
|
rotary_pos_emb=True, |
|
rel_pos_bias=True, |
|
cross_attend=True, |
|
)) |
|
|
|
def get_grad_norm_parameter_groups(self): |
|
return { |
|
'encoder': list(self.encoder.parameters()), |
|
'decoder': list(self.decoder.parameters()), |
|
'minicoder': list(self.minicoder.parameters()), |
|
} |
|
|
|
def forward(self, text_codes, conditioning_signal, mel_codes, wav_lengths, return_loss=True): |
|
|
|
mel_lengths = wav_lengths // 1024 + 1 |
|
for b in range(mel_codes.shape[0]): |
|
mel_codes[b, mel_lengths[b]:] = self.STOP_TOKEN |
|
mel_codes = F.pad(mel_codes, (0, 1), value=self.STOP_TOKEN) |
|
|
|
|
|
if len(conditioning_signal.shape) != 4: |
|
conditioning_signal = conditioning_signal.unsqueeze(1) |
|
cond_embs = [] |
|
for i in range(conditioning_signal.shape[1]): |
|
cond_embs.append(self.minicoder(conditioning_signal[:, i])) |
|
cond_emb = torch.stack(cond_embs, dim=1).mean(dim=1, keepdim=True) |
|
enc_text = self.encoder(text_codes, return_embeddings=True) |
|
context = torch.cat([cond_emb, enc_text], dim=1) |
|
|
|
|
|
dec_inputs = F.pad(mel_codes, (1,0), value=self.START_TOKEN)[:, :-1] |
|
dec = self.decoder(dec_inputs, context=context) |
|
if not return_loss: |
|
return dec |
|
loss_mel = F.cross_entropy(dec.permute(0,2,1), mel_codes) |
|
return loss_mel |
|
|
|
def generate(self, conditioning_signal, text_codes, **hf_generate_kwargs): |
|
if not hasattr(self, 'inference_model'): |
|
self.inference_model = InferenceModel(self) |
|
|
|
if len(conditioning_signal.shape) != 4: |
|
conditioning_signal = conditioning_signal.unsqueeze(1) |
|
cond_embs = [] |
|
for i in range(conditioning_signal.shape[1]): |
|
cond_embs.append(self.minicoder(conditioning_signal[:, i])) |
|
cond_emb = torch.stack(cond_embs, dim=1).mean(dim=1, keepdim=True) |
|
enc_text = self.encoder(text_codes, return_embeddings=True) |
|
context = torch.cat([cond_emb, enc_text], dim=1) |
|
self.inference_model.store_context(context) |
|
|
|
gen = self.inference_model.generate(bos_token_id=self.START_TOKEN, pad_token_id=self.STOP_TOKEN, eos_token_id=self.STOP_TOKEN, |
|
max_length=250, output_attentions=False, return_dict_in_generate=True, |
|
**hf_generate_kwargs) |
|
return gen.sequences |
|
|
|
|
|
if __name__ == '__main__': |
|
codegen = AutoregressiveCodegen(1024, 20) |
|
codegen.generate(torch.randn((1,80,120)), torch.randint(0,256,(1,200))) |
|
codegen(torch.randint(0,256, (2,200)), |
|
torch.randn(2,80,120), |
|
torch.randint(0,8192, (2,350)), |
|
torch.tensor([192,350])) |