tortoise / do_tts.py
jbetker's picture
update
07a6edc
raw
history blame
1.76 kB
import argparse
import os
import torchaudio
from api import TextToSpeech
from utils.audio import load_audio, get_voices
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.")
parser.add_argument('--voice', type=str, help='Selects the voice to use for generation. See options in voices/ directory (and add your own!) '
'Use the & character to join two voices together. Use a comma to perform inference on multiple voices.', default='pat')
parser.add_argument('--preset', type=str, help='Which voice preset to use.', default='standard')
parser.add_argument('--voice_diversity_intelligibility_slider', type=float,
help='How to balance vocal diversity with the quality/intelligibility of the spoken text. 0 means highly diverse voice (not recommended), 1 means maximize intellibility',
default=.5)
parser.add_argument('--output_path', type=str, help='Where to store outputs.', default='results/')
args = parser.parse_args()
os.makedirs(args.output_path, exist_ok=True)
tts = TextToSpeech()
voices = get_voices()
selected_voices = args.voice.split(',')
for voice in selected_voices:
cond_paths = voices[voice]
conds = []
for cond_path in cond_paths:
c = load_audio(cond_path, 22050)
conds.append(c)
gen = tts.tts_with_preset(args.text, conds, preset=args.preset, clvp_cvvp_slider=args.voice_diversity_intelligibility_slider)
torchaudio.save(os.path.join(args.output_path, f'{voice}.wav'), gen.squeeze(0).cpu(), 24000)