Spaces:
Running
on
Zero
Running
on
Zero
clementchadebec
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -5,25 +5,37 @@ from diffusers import StableDiffusionPipeline, LCMScheduler
|
|
5 |
import torch
|
6 |
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
if torch.cuda.is_available():
|
11 |
torch.cuda.max_memory_allocated(device=device)
|
12 |
-
pipe =
|
13 |
-
|
14 |
-
|
|
|
15 |
)
|
16 |
pipe.enable_xformers_memory_efficient_attention()
|
17 |
pipe = pipe.to(device)
|
18 |
else:
|
19 |
-
pipe =
|
20 |
-
"
|
21 |
-
|
|
|
22 |
)
|
23 |
pipe = pipe.to(device)
|
24 |
|
25 |
pipe.scheduler = LCMScheduler.from_pretrained(
|
26 |
-
"
|
27 |
subfolder="scheduler",
|
28 |
timestep_spacing="trailing",
|
29 |
)
|
@@ -32,7 +44,8 @@ pipe.load_lora_weights(adapter_id)
|
|
32 |
pipe.fuse_lora()
|
33 |
|
34 |
MAX_SEED = np.iinfo(np.int32).max
|
35 |
-
MAX_IMAGE_SIZE =
|
|
|
36 |
|
37 |
def infer(prompt, seed, randomize_seed, num_inference_steps):
|
38 |
|
@@ -59,7 +72,7 @@ examples = [
|
|
59 |
css="""
|
60 |
#col-container {
|
61 |
margin: 0 auto;
|
62 |
-
max-width:
|
63 |
}
|
64 |
"""
|
65 |
|
@@ -104,17 +117,6 @@ with gr.Blocks(css=css) as demo:
|
|
104 |
|
105 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
with gr.Row():
|
110 |
-
|
111 |
-
num_inference_steps = gr.Slider(
|
112 |
-
label="Number of inference steps",
|
113 |
-
minimum=2,
|
114 |
-
maximum=8,
|
115 |
-
step=1,
|
116 |
-
value=4,
|
117 |
-
)
|
118 |
|
119 |
gr.Examples(
|
120 |
examples = examples,
|
@@ -123,7 +125,7 @@ with gr.Blocks(css=css) as demo:
|
|
123 |
|
124 |
run_button.click(
|
125 |
fn = infer,
|
126 |
-
inputs = [prompt, seed, randomize_seed,
|
127 |
outputs = [result]
|
128 |
)
|
129 |
|
|
|
5 |
import torch
|
6 |
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
+
|
9 |
+
transformer = Transformer2DModel.from_pretrained(
|
10 |
+
"PixArt-alpha/PixArt-XL-2-1024-MS",
|
11 |
+
subfolder="transformer",
|
12 |
+
torch_dtype=torch.float16
|
13 |
+
)
|
14 |
+
transformer = PeftModel.from_pretrained(
|
15 |
+
transformer,
|
16 |
+
"jasperai/flash-pixart"
|
17 |
+
)
|
18 |
+
|
19 |
|
20 |
if torch.cuda.is_available():
|
21 |
torch.cuda.max_memory_allocated(device=device)
|
22 |
+
pipe = PixArtAlphaPipeline.from_pretrained(
|
23 |
+
"PixArt-alpha/PixArt-XL-2-1024-MS",
|
24 |
+
transformer=transformer,
|
25 |
+
torch_dtype=torch.float16
|
26 |
)
|
27 |
pipe.enable_xformers_memory_efficient_attention()
|
28 |
pipe = pipe.to(device)
|
29 |
else:
|
30 |
+
pipe = PixArtAlphaPipeline.from_pretrained(
|
31 |
+
"PixArt-alpha/PixArt-XL-2-1024-MS",
|
32 |
+
transformer=transformer,
|
33 |
+
torch_dtype=torch.float16
|
34 |
)
|
35 |
pipe = pipe.to(device)
|
36 |
|
37 |
pipe.scheduler = LCMScheduler.from_pretrained(
|
38 |
+
"PixArt-alpha/PixArt-XL-2-1024-MS",
|
39 |
subfolder="scheduler",
|
40 |
timestep_spacing="trailing",
|
41 |
)
|
|
|
44 |
pipe.fuse_lora()
|
45 |
|
46 |
MAX_SEED = np.iinfo(np.int32).max
|
47 |
+
MAX_IMAGE_SIZE = 1024
|
48 |
+
NUM_INFERENCE_STEPS = 4
|
49 |
|
50 |
def infer(prompt, seed, randomize_seed, num_inference_steps):
|
51 |
|
|
|
72 |
css="""
|
73 |
#col-container {
|
74 |
margin: 0 auto;
|
75 |
+
max-width: 512px;
|
76 |
}
|
77 |
"""
|
78 |
|
|
|
117 |
|
118 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
gr.Examples(
|
122 |
examples = examples,
|
|
|
125 |
|
126 |
run_button.click(
|
127 |
fn = infer,
|
128 |
+
inputs = [prompt, seed, randomize_seed, NUM_INFERENCE_STEPS],
|
129 |
outputs = [result]
|
130 |
)
|
131 |
|