|
import requests |
|
import pandas as pd |
|
import datetime |
|
import pytz |
|
import numpy as np |
|
import math |
|
import ta |
|
|
|
class StockDataFetcher: |
|
def __init__(self): |
|
|
|
self.base_url = "https://groww.in/v1/api/charting_service/v3/chart/exchange/NSE/segment/CASH/" |
|
self.base_fno_url = "https://groww.in/v1/api/stocks_fo_data/v3/charting_service/chart/exchange/NSE/segment/FNO/" |
|
self.latest_stock_price = "https://groww.in/v1/api/stocks_data/v1/tr_live_prices/exchange/NSE/segment/CASH/" |
|
self.latest_option_price = "https://groww.in/v1/api/stocks_fo_data/v1/tr_live_prices/exchange/NSE/segment/FNO/" |
|
self.option_chain = "https://groww.in/v1/api/option_chain_service/v1/option_chain/derivatives/" |
|
self.search_url = "https://groww.in/v1/api/search/v1/entity" |
|
self.news_url = "https://groww.in/v1/api/stocks_company_master/v1/company_news/groww_contract_id/" |
|
self.all_stocks_url = "https://groww.in/v1/api/stocks_data/v1/all_stocks" |
|
|
|
self.indian_timezone = pytz.timezone('Asia/Kolkata') |
|
self.utc_timezone = pytz.timezone('UTC') |
|
self.headers = { |
|
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0' |
|
} |
|
|
|
def _get_time_range(self, days=7): |
|
current_time = datetime.datetime.now(self.indian_timezone) |
|
start_time = current_time - datetime.timedelta(days=days) |
|
start_time_utc = start_time.astimezone(pytz.utc) |
|
current_time_utc = current_time.astimezone(pytz.utc) |
|
start_time_millis = int(start_time_utc.timestamp() * 1000) |
|
end_time_millis = int(current_time_utc.timestamp() * 1000) |
|
return start_time_millis, end_time_millis |
|
|
|
def fetch_stock_data(self, symbol, interval=15, days=7): |
|
start_time, end_time = self._get_time_range(days) |
|
params = { |
|
'endTimeInMillis': end_time, |
|
'intervalInMinutes': interval, |
|
'startTimeInMillis': start_time, |
|
} |
|
try: |
|
print("Downloading data of", symbol.upper()) |
|
if symbol[-2:].upper() == "PE" or symbol[-2:].upper() == "CE" or symbol[-3:].upper() == "FUT": |
|
response = requests.get(self.base_fno_url + symbol.upper(), params=params, headers=self.headers) |
|
else: |
|
response = requests.get(self.base_url + symbol.upper(), params=params, headers=self.headers) |
|
response.raise_for_status() |
|
data = response.json() |
|
columns = ['Date', 'Open', 'High', 'Low', 'Close', 'Volume'] |
|
for row in data['candles']: |
|
row[0] = datetime.datetime.utcfromtimestamp(row[0]) |
|
df = pd.DataFrame(data['candles'], columns=columns) |
|
df['Date'] = pd.to_datetime(df['Date']) |
|
df['Date'] = df['Date'].dt.tz_localize(self.utc_timezone).dt.tz_convert(self.indian_timezone) |
|
return df |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error during API request: {e}") |
|
return None |
|
|
|
def fetch_latest_price(self, symbol): |
|
try: |
|
if symbol[-2:].upper() == "PE" or symbol[-2:].upper() == "CE" or symbol[-3:].upper() == "FUT": |
|
response = requests.get(self.latest_option_price + symbol.upper() + "/latest", headers=self.headers) |
|
else: |
|
response = requests.get(self.latest_stock_price + symbol.upper() + "/latest", headers=self.headers) |
|
if response.status_code == 200: |
|
data = response.json() |
|
latest_price = data.get('ltp') |
|
print(symbol, 'Price: ', latest_price) |
|
return latest_price |
|
else: |
|
print(f"Failed to fetch data. Status code: {response.status_code}") |
|
return None |
|
except Exception as e: |
|
print(f"An error occurred: {e}") |
|
return None |
|
|
|
def fetch_option_chain(self, symbol): |
|
response = requests.get(self.option_chain + symbol, headers=self.headers) |
|
data = response.json()['optionChain']['optionChains'] |
|
ltp = response.json()['livePrice']['value'] |
|
|
|
chain = [] |
|
for i in range(len(data)): |
|
chain.append({"Symbol_CE": data[i]["callOption"]['growwContractId'], "OI_CALL": data[i]["callOption"]['openInterest'] , "CALL": data[i]["callOption"]['ltp'], "strikePrice": data[i]['strikePrice']/100, "PUT": data[i]["putOption"]['ltp'], "OI_PUT": data[i]["putOption"]['openInterest'], "Symbol_PE": data[i]["putOption"]['growwContractId']} |
|
) |
|
|
|
chain = pd.DataFrame(chain) |
|
index = chain[(chain['strikePrice'] >= ltp)].head(1).index[0] |
|
print(response.json()['livePrice']) |
|
chain = chain[index-6:index+7].reset_index(drop=True) |
|
optin_exp = chain['Symbol_CE'][0][:-7] |
|
return chain, optin_exp |
|
|
|
def search_entity(self, symbol, entity=None, page=0, size=1, app=False): |
|
params = { |
|
'app': app, |
|
'entity_type': entity, |
|
'page': page, |
|
'q': f"{symbol}", |
|
'size': size |
|
} |
|
try: |
|
response = requests.get(self.search_url, params=params, headers=self.headers) |
|
response.raise_for_status() |
|
data = response.json() |
|
entity = data['content'][0] |
|
return {"ID": entity['id'], "title": entity['title'], "NSE_Symbol": entity['nse_scrip_code'], "contract_id" : entity["groww_contract_id"]} |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error during API request: {e}") |
|
return None |
|
|
|
def fetch_stock_news(self, symbol, page=1, size=1): |
|
params = { |
|
"page" : page, |
|
"size" : size |
|
} |
|
try: |
|
symbol_id = self.search_entity(symbol.upper())['contract_id'] |
|
response = requests.get(self.news_url + symbol_id, headers=self.headers, params=params).json()['results'] |
|
print(response) |
|
news = [] |
|
for i in range(len(response)): |
|
Title = response[i]['title'] |
|
Summary = response[i]['summary'] |
|
Url = response[i]['url'] |
|
Date = response[i]['pubDate'] |
|
Source = response[i]['source'] |
|
CompanyName = response[i]['companies'][0]['companyName'] |
|
ScripCode = response[i]['companies'][0]['nseScripCode'] |
|
BlogUrl = response[i]['companies'][0]['blogUrl'] |
|
Topics = response[i]['topics'][0] |
|
|
|
news.append({ |
|
'title': Title, |
|
'summary': Summary, |
|
'url': Url, |
|
'pubDate': Date, |
|
'source': Source, |
|
'companyName': CompanyName, |
|
'symbol': ScripCode, |
|
'blogUrl': BlogUrl, |
|
'topics': Topics |
|
}) |
|
|
|
news_table = pd.DataFrame(news) |
|
return news_table |
|
except: |
|
print("Something went wrong") |
|
return None |
|
|
|
def fetch_all_stock(self): |
|
try: |
|
params = { |
|
'listFilters': {'INDUSTRY': [], 'INDEX': []}, |
|
'INDEX': ["BSE 100", "Nifty 100", "Nifty Bank", "Nifty Next 50", "Nifty Midcap 100", "SENSEX", "Nifty 50"], |
|
'INDUSTRY': [], |
|
'objFilters': {'CLOSE_PRICE': {'max': 100000, 'min': 0}, 'MARKET_CAP': {'min': 0, 'max': 2000000000000000}}, |
|
'CLOSE_PRICE': {'max': 100000, 'min': 0}, |
|
'MARKET_CAP': {'min': 0, 'max': 2000000000000000}, |
|
'size': "1000", |
|
'sortBy': "NA", |
|
'sortType': "ASC" |
|
} |
|
|
|
all_data = [] |
|
page = 0 |
|
while True: |
|
params['page'] = str(page) |
|
response = requests.post(self.all_stocks_url, headers=self.headers, json=params) |
|
data = response.json() |
|
records = data.get('records', []) |
|
if not records: |
|
break |
|
all_data.extend(records) |
|
page += 1 |
|
|
|
df = pd.DataFrame(all_data) |
|
live_price_df = pd.json_normalize(df['livePriceDto']) |
|
df = pd.concat([df, live_price_df], axis=1) |
|
df = df.drop(columns=['livePriceDto']) |
|
return df |
|
except: |
|
return None |
|
|
|
def realtime_signal(self, symbol, intervals=15, days=10): |
|
|
|
rounding_value=None |
|
|
|
if symbol.upper() == "NIFTY": |
|
index_symbol = "NIFTY" |
|
rounding_value = 50 |
|
|
|
elif symbol.upper() == "NIFTY-BANK": |
|
index_symbol = "BANKNIFTY" |
|
rounding_value = 100 |
|
|
|
else: |
|
pass |
|
|
|
stock_data = self.fetch_stock_data(index_symbol, intervals, days) |
|
chain, exp = self.fetch_option_chain(symbol.upper()) |
|
stock_data['RSI'] = ta.momentum.rsi(stock_data['Close'], window=14) |
|
stock_data = stock_data.drop(columns=['Volume']) |
|
stock_data['Prev_RSI'] = stock_data['RSI'].shift(1) |
|
stock_data['Signal'] = 0 |
|
call_condition = (stock_data['RSI'] > 60) & (stock_data['Prev_RSI'] < 60) |
|
put_condition = (stock_data['RSI'] < 40) & (stock_data['Prev_RSI'] > 40) |
|
stock_data.loc[call_condition, 'Signal'] = 1 |
|
stock_data.loc[put_condition, 'Signal'] = 2 |
|
stock_data = stock_data.dropna().reset_index(drop=True) |
|
|
|
def floor_to_nearest(value, nearest): |
|
return math.ceil(value / nearest) * nearest |
|
|
|
stock_data['Option'] = stock_data['Close'].apply(lambda x: floor_to_nearest(x, rounding_value)) |
|
|
|
stock_data['direction'] = np.where(stock_data['Signal'] == 2, "PE", np.where(stock_data['Signal'] == 1, "CE", "")) |
|
stock_data['symbol'] = exp + stock_data['Option'].astype(str) + stock_data['direction'] |
|
return stock_data |