screener / utils.py
jarvisx17's picture
Create utils.py
81eeead verified
raw
history blame
9.5 kB
import requests
import pandas as pd
import datetime
import pytz
import numpy as np
import math
import ta
class StockDataFetcher:
def __init__(self):
self.base_url = "https://groww.in/v1/api/charting_service/v3/chart/exchange/NSE/segment/CASH/"
self.base_fno_url = "https://groww.in/v1/api/stocks_fo_data/v3/charting_service/chart/exchange/NSE/segment/FNO/"
self.latest_stock_price = "https://groww.in/v1/api/stocks_data/v1/tr_live_prices/exchange/NSE/segment/CASH/"
self.latest_option_price = "https://groww.in/v1/api/stocks_fo_data/v1/tr_live_prices/exchange/NSE/segment/FNO/"
self.option_chain = "https://groww.in/v1/api/option_chain_service/v1/option_chain/derivatives/"
self.search_url = "https://groww.in/v1/api/search/v1/entity"
self.news_url = "https://groww.in/v1/api/stocks_company_master/v1/company_news/groww_contract_id/"
self.all_stocks_url = "https://groww.in/v1/api/stocks_data/v1/all_stocks"
self.indian_timezone = pytz.timezone('Asia/Kolkata')
self.utc_timezone = pytz.timezone('UTC')
self.headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0'
}
def _get_time_range(self, days=7):
current_time = datetime.datetime.now(self.indian_timezone)
start_time = current_time - datetime.timedelta(days=days)
start_time_utc = start_time.astimezone(pytz.utc)
current_time_utc = current_time.astimezone(pytz.utc)
start_time_millis = int(start_time_utc.timestamp() * 1000)
end_time_millis = int(current_time_utc.timestamp() * 1000)
return start_time_millis, end_time_millis
def fetch_stock_data(self, symbol, interval=15, days=7):
start_time, end_time = self._get_time_range(days)
params = {
'endTimeInMillis': end_time,
'intervalInMinutes': interval,
'startTimeInMillis': start_time,
}
try:
print("Downloading data of", symbol.upper())
if symbol[-2:].upper() == "PE" or symbol[-2:].upper() == "CE" or symbol[-3:].upper() == "FUT":
response = requests.get(self.base_fno_url + symbol.upper(), params=params, headers=self.headers)
else:
response = requests.get(self.base_url + symbol.upper(), params=params, headers=self.headers)
response.raise_for_status()
data = response.json()
columns = ['Date', 'Open', 'High', 'Low', 'Close', 'Volume']
for row in data['candles']:
row[0] = datetime.datetime.utcfromtimestamp(row[0])
df = pd.DataFrame(data['candles'], columns=columns)
df['Date'] = pd.to_datetime(df['Date'])
df['Date'] = df['Date'].dt.tz_localize(self.utc_timezone).dt.tz_convert(self.indian_timezone)
return df
except requests.exceptions.RequestException as e:
print(f"Error during API request: {e}")
return None
def fetch_latest_price(self, symbol):
try:
if symbol[-2:].upper() == "PE" or symbol[-2:].upper() == "CE" or symbol[-3:].upper() == "FUT":
response = requests.get(self.latest_option_price + symbol.upper() + "/latest", headers=self.headers)
else:
response = requests.get(self.latest_stock_price + symbol.upper() + "/latest", headers=self.headers)
if response.status_code == 200:
data = response.json()
latest_price = data.get('ltp')
print(symbol, 'Price: ', latest_price)
return latest_price
else:
print(f"Failed to fetch data. Status code: {response.status_code}")
return None
except Exception as e:
print(f"An error occurred: {e}")
return None
def fetch_option_chain(self, symbol):
response = requests.get(self.option_chain + symbol, headers=self.headers)
data = response.json()['optionChain']['optionChains']
ltp = response.json()['livePrice']['value']
chain = []
for i in range(len(data)):
chain.append({"Symbol_CE": data[i]["callOption"]['growwContractId'], "OI_CALL": data[i]["callOption"]['openInterest'] , "CALL": data[i]["callOption"]['ltp'], "strikePrice": data[i]['strikePrice']/100, "PUT": data[i]["putOption"]['ltp'], "OI_PUT": data[i]["putOption"]['openInterest'], "Symbol_PE": data[i]["putOption"]['growwContractId']}
)
chain = pd.DataFrame(chain)
index = chain[(chain['strikePrice'] >= ltp)].head(1).index[0]
print(response.json()['livePrice'])
chain = chain[index-6:index+7].reset_index(drop=True)
optin_exp = chain['Symbol_CE'][0][:-7]
return chain, optin_exp
def search_entity(self, symbol, entity=None, page=0, size=1, app=False):
params = {
'app': app,
'entity_type': entity,
'page': page,
'q': f"{symbol}",
'size': size
}
try:
response = requests.get(self.search_url, params=params, headers=self.headers)
response.raise_for_status()
data = response.json()
entity = data['content'][0]
return {"ID": entity['id'], "title": entity['title'], "NSE_Symbol": entity['nse_scrip_code'], "contract_id" : entity["groww_contract_id"]}
except requests.exceptions.RequestException as e:
print(f"Error during API request: {e}")
return None
def fetch_stock_news(self, symbol, page=1, size=1):
params = {
"page" : page,
"size" : size
}
try:
symbol_id = self.search_entity(symbol.upper())['contract_id']
response = requests.get(self.news_url + symbol_id, headers=self.headers, params=params).json()['results']
print(response)
news = []
for i in range(len(response)):
Title = response[i]['title']
Summary = response[i]['summary']
Url = response[i]['url']
Date = response[i]['pubDate']
Source = response[i]['source']
CompanyName = response[i]['companies'][0]['companyName']
ScripCode = response[i]['companies'][0]['nseScripCode']
BlogUrl = response[i]['companies'][0]['blogUrl']
Topics = response[i]['topics'][0]
news.append({
'title': Title,
'summary': Summary,
'url': Url,
'pubDate': Date,
'source': Source,
'companyName': CompanyName,
'symbol': ScripCode,
'blogUrl': BlogUrl,
'topics': Topics
})
news_table = pd.DataFrame(news)
return news_table
except:
print("Something went wrong")
return None
def fetch_all_stock(self):
try:
params = {
'listFilters': {'INDUSTRY': [], 'INDEX': []},
'INDEX': ["BSE 100", "Nifty 100", "Nifty Bank", "Nifty Next 50", "Nifty Midcap 100", "SENSEX", "Nifty 50"],
'INDUSTRY': [],
'objFilters': {'CLOSE_PRICE': {'max': 100000, 'min': 0}, 'MARKET_CAP': {'min': 0, 'max': 2000000000000000}},
'CLOSE_PRICE': {'max': 100000, 'min': 0},
'MARKET_CAP': {'min': 0, 'max': 2000000000000000},
'size': "1000",
'sortBy': "NA",
'sortType': "ASC"
}
all_data = []
page = 0
while True:
params['page'] = str(page)
response = requests.post(self.all_stocks_url, headers=self.headers, json=params)
data = response.json()
records = data.get('records', [])
if not records:
break
all_data.extend(records)
page += 1
df = pd.DataFrame(all_data)
live_price_df = pd.json_normalize(df['livePriceDto'])
df = pd.concat([df, live_price_df], axis=1)
df = df.drop(columns=['livePriceDto'])
return df
except:
return None
def realtime_signal(self, symbol, intervals=15, days=10):
rounding_value=None
if symbol.upper() == "NIFTY":
index_symbol = "NIFTY"
rounding_value = 50
elif symbol.upper() == "NIFTY-BANK":
index_symbol = "BANKNIFTY"
rounding_value = 100
else:
pass
stock_data = self.fetch_stock_data(index_symbol, intervals, days)
chain, exp = self.fetch_option_chain(symbol.upper())
stock_data['RSI'] = ta.momentum.rsi(stock_data['Close'], window=14)
stock_data = stock_data.drop(columns=['Volume'])
stock_data['Prev_RSI'] = stock_data['RSI'].shift(1)
stock_data['Signal'] = 0
call_condition = (stock_data['RSI'] > 60) & (stock_data['Prev_RSI'] < 60)
put_condition = (stock_data['RSI'] < 40) & (stock_data['Prev_RSI'] > 40)
stock_data.loc[call_condition, 'Signal'] = 1
stock_data.loc[put_condition, 'Signal'] = 2
stock_data = stock_data.dropna().reset_index(drop=True)
def floor_to_nearest(value, nearest):
return math.ceil(value / nearest) * nearest
stock_data['Option'] = stock_data['Close'].apply(lambda x: floor_to_nearest(x, rounding_value))
stock_data['direction'] = np.where(stock_data['Signal'] == 2, "PE", np.where(stock_data['Signal'] == 1, "CE", ""))
stock_data['symbol'] = exp + stock_data['Option'].astype(str) + stock_data['direction']
return stock_data