Create utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import pandas as pd
|
3 |
+
import datetime
|
4 |
+
import pytz
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
import ta
|
8 |
+
|
9 |
+
class StockDataFetcher:
|
10 |
+
def __init__(self):
|
11 |
+
|
12 |
+
self.base_url = "https://groww.in/v1/api/charting_service/v3/chart/exchange/NSE/segment/CASH/"
|
13 |
+
self.base_fno_url = "https://groww.in/v1/api/stocks_fo_data/v3/charting_service/chart/exchange/NSE/segment/FNO/"
|
14 |
+
self.latest_stock_price = "https://groww.in/v1/api/stocks_data/v1/tr_live_prices/exchange/NSE/segment/CASH/"
|
15 |
+
self.latest_option_price = "https://groww.in/v1/api/stocks_fo_data/v1/tr_live_prices/exchange/NSE/segment/FNO/"
|
16 |
+
self.option_chain = "https://groww.in/v1/api/option_chain_service/v1/option_chain/derivatives/"
|
17 |
+
self.search_url = "https://groww.in/v1/api/search/v1/entity"
|
18 |
+
self.news_url = "https://groww.in/v1/api/stocks_company_master/v1/company_news/groww_contract_id/"
|
19 |
+
self.all_stocks_url = "https://groww.in/v1/api/stocks_data/v1/all_stocks"
|
20 |
+
|
21 |
+
self.indian_timezone = pytz.timezone('Asia/Kolkata')
|
22 |
+
self.utc_timezone = pytz.timezone('UTC')
|
23 |
+
self.headers = {
|
24 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0'
|
25 |
+
}
|
26 |
+
|
27 |
+
def _get_time_range(self, days=7):
|
28 |
+
current_time = datetime.datetime.now(self.indian_timezone)
|
29 |
+
start_time = current_time - datetime.timedelta(days=days)
|
30 |
+
start_time_utc = start_time.astimezone(pytz.utc)
|
31 |
+
current_time_utc = current_time.astimezone(pytz.utc)
|
32 |
+
start_time_millis = int(start_time_utc.timestamp() * 1000)
|
33 |
+
end_time_millis = int(current_time_utc.timestamp() * 1000)
|
34 |
+
return start_time_millis, end_time_millis
|
35 |
+
|
36 |
+
def fetch_stock_data(self, symbol, interval=15, days=7):
|
37 |
+
start_time, end_time = self._get_time_range(days)
|
38 |
+
params = {
|
39 |
+
'endTimeInMillis': end_time,
|
40 |
+
'intervalInMinutes': interval,
|
41 |
+
'startTimeInMillis': start_time,
|
42 |
+
}
|
43 |
+
try:
|
44 |
+
print("Downloading data of", symbol.upper())
|
45 |
+
if symbol[-2:].upper() == "PE" or symbol[-2:].upper() == "CE" or symbol[-3:].upper() == "FUT":
|
46 |
+
response = requests.get(self.base_fno_url + symbol.upper(), params=params, headers=self.headers)
|
47 |
+
else:
|
48 |
+
response = requests.get(self.base_url + symbol.upper(), params=params, headers=self.headers)
|
49 |
+
response.raise_for_status()
|
50 |
+
data = response.json()
|
51 |
+
columns = ['Date', 'Open', 'High', 'Low', 'Close', 'Volume']
|
52 |
+
for row in data['candles']:
|
53 |
+
row[0] = datetime.datetime.utcfromtimestamp(row[0])
|
54 |
+
df = pd.DataFrame(data['candles'], columns=columns)
|
55 |
+
df['Date'] = pd.to_datetime(df['Date'])
|
56 |
+
df['Date'] = df['Date'].dt.tz_localize(self.utc_timezone).dt.tz_convert(self.indian_timezone)
|
57 |
+
return df
|
58 |
+
except requests.exceptions.RequestException as e:
|
59 |
+
print(f"Error during API request: {e}")
|
60 |
+
return None
|
61 |
+
|
62 |
+
def fetch_latest_price(self, symbol):
|
63 |
+
try:
|
64 |
+
if symbol[-2:].upper() == "PE" or symbol[-2:].upper() == "CE" or symbol[-3:].upper() == "FUT":
|
65 |
+
response = requests.get(self.latest_option_price + symbol.upper() + "/latest", headers=self.headers)
|
66 |
+
else:
|
67 |
+
response = requests.get(self.latest_stock_price + symbol.upper() + "/latest", headers=self.headers)
|
68 |
+
if response.status_code == 200:
|
69 |
+
data = response.json()
|
70 |
+
latest_price = data.get('ltp')
|
71 |
+
print(symbol, 'Price: ', latest_price)
|
72 |
+
return latest_price
|
73 |
+
else:
|
74 |
+
print(f"Failed to fetch data. Status code: {response.status_code}")
|
75 |
+
return None
|
76 |
+
except Exception as e:
|
77 |
+
print(f"An error occurred: {e}")
|
78 |
+
return None
|
79 |
+
|
80 |
+
def fetch_option_chain(self, symbol):
|
81 |
+
response = requests.get(self.option_chain + symbol, headers=self.headers)
|
82 |
+
data = response.json()['optionChain']['optionChains']
|
83 |
+
ltp = response.json()['livePrice']['value']
|
84 |
+
|
85 |
+
chain = []
|
86 |
+
for i in range(len(data)):
|
87 |
+
chain.append({"Symbol_CE": data[i]["callOption"]['growwContractId'], "OI_CALL": data[i]["callOption"]['openInterest'] , "CALL": data[i]["callOption"]['ltp'], "strikePrice": data[i]['strikePrice']/100, "PUT": data[i]["putOption"]['ltp'], "OI_PUT": data[i]["putOption"]['openInterest'], "Symbol_PE": data[i]["putOption"]['growwContractId']}
|
88 |
+
)
|
89 |
+
|
90 |
+
chain = pd.DataFrame(chain)
|
91 |
+
index = chain[(chain['strikePrice'] >= ltp)].head(1).index[0]
|
92 |
+
print(response.json()['livePrice'])
|
93 |
+
chain = chain[index-6:index+7].reset_index(drop=True)
|
94 |
+
optin_exp = chain['Symbol_CE'][0][:-7]
|
95 |
+
return chain, optin_exp
|
96 |
+
|
97 |
+
def search_entity(self, symbol, entity=None, page=0, size=1, app=False):
|
98 |
+
params = {
|
99 |
+
'app': app,
|
100 |
+
'entity_type': entity,
|
101 |
+
'page': page,
|
102 |
+
'q': f"{symbol}",
|
103 |
+
'size': size
|
104 |
+
}
|
105 |
+
try:
|
106 |
+
response = requests.get(self.search_url, params=params, headers=self.headers)
|
107 |
+
response.raise_for_status()
|
108 |
+
data = response.json()
|
109 |
+
entity = data['content'][0]
|
110 |
+
return {"ID": entity['id'], "title": entity['title'], "NSE_Symbol": entity['nse_scrip_code'], "contract_id" : entity["groww_contract_id"]}
|
111 |
+
except requests.exceptions.RequestException as e:
|
112 |
+
print(f"Error during API request: {e}")
|
113 |
+
return None
|
114 |
+
|
115 |
+
def fetch_stock_news(self, symbol, page=1, size=1):
|
116 |
+
params = {
|
117 |
+
"page" : page,
|
118 |
+
"size" : size
|
119 |
+
}
|
120 |
+
try:
|
121 |
+
symbol_id = self.search_entity(symbol.upper())['contract_id']
|
122 |
+
response = requests.get(self.news_url + symbol_id, headers=self.headers, params=params).json()['results']
|
123 |
+
print(response)
|
124 |
+
news = []
|
125 |
+
for i in range(len(response)):
|
126 |
+
Title = response[i]['title']
|
127 |
+
Summary = response[i]['summary']
|
128 |
+
Url = response[i]['url']
|
129 |
+
Date = response[i]['pubDate']
|
130 |
+
Source = response[i]['source']
|
131 |
+
CompanyName = response[i]['companies'][0]['companyName']
|
132 |
+
ScripCode = response[i]['companies'][0]['nseScripCode']
|
133 |
+
BlogUrl = response[i]['companies'][0]['blogUrl']
|
134 |
+
Topics = response[i]['topics'][0]
|
135 |
+
|
136 |
+
news.append({
|
137 |
+
'title': Title,
|
138 |
+
'summary': Summary,
|
139 |
+
'url': Url,
|
140 |
+
'pubDate': Date,
|
141 |
+
'source': Source,
|
142 |
+
'companyName': CompanyName,
|
143 |
+
'symbol': ScripCode,
|
144 |
+
'blogUrl': BlogUrl,
|
145 |
+
'topics': Topics
|
146 |
+
})
|
147 |
+
|
148 |
+
news_table = pd.DataFrame(news)
|
149 |
+
return news_table
|
150 |
+
except:
|
151 |
+
print("Something went wrong")
|
152 |
+
return None
|
153 |
+
|
154 |
+
def fetch_all_stock(self):
|
155 |
+
try:
|
156 |
+
params = {
|
157 |
+
'listFilters': {'INDUSTRY': [], 'INDEX': []},
|
158 |
+
'INDEX': ["BSE 100", "Nifty 100", "Nifty Bank", "Nifty Next 50", "Nifty Midcap 100", "SENSEX", "Nifty 50"],
|
159 |
+
'INDUSTRY': [],
|
160 |
+
'objFilters': {'CLOSE_PRICE': {'max': 100000, 'min': 0}, 'MARKET_CAP': {'min': 0, 'max': 2000000000000000}},
|
161 |
+
'CLOSE_PRICE': {'max': 100000, 'min': 0},
|
162 |
+
'MARKET_CAP': {'min': 0, 'max': 2000000000000000},
|
163 |
+
'size': "1000",
|
164 |
+
'sortBy': "NA",
|
165 |
+
'sortType': "ASC"
|
166 |
+
}
|
167 |
+
|
168 |
+
all_data = []
|
169 |
+
page = 0
|
170 |
+
while True:
|
171 |
+
params['page'] = str(page)
|
172 |
+
response = requests.post(self.all_stocks_url, headers=self.headers, json=params)
|
173 |
+
data = response.json()
|
174 |
+
records = data.get('records', [])
|
175 |
+
if not records:
|
176 |
+
break
|
177 |
+
all_data.extend(records)
|
178 |
+
page += 1
|
179 |
+
|
180 |
+
df = pd.DataFrame(all_data)
|
181 |
+
live_price_df = pd.json_normalize(df['livePriceDto'])
|
182 |
+
df = pd.concat([df, live_price_df], axis=1)
|
183 |
+
df = df.drop(columns=['livePriceDto'])
|
184 |
+
return df
|
185 |
+
except:
|
186 |
+
return None
|
187 |
+
|
188 |
+
def realtime_signal(self, symbol, intervals=15, days=10):
|
189 |
+
|
190 |
+
rounding_value=None
|
191 |
+
|
192 |
+
if symbol.upper() == "NIFTY":
|
193 |
+
index_symbol = "NIFTY"
|
194 |
+
rounding_value = 50
|
195 |
+
|
196 |
+
elif symbol.upper() == "NIFTY-BANK":
|
197 |
+
index_symbol = "BANKNIFTY"
|
198 |
+
rounding_value = 100
|
199 |
+
|
200 |
+
else:
|
201 |
+
pass
|
202 |
+
|
203 |
+
stock_data = self.fetch_stock_data(index_symbol, intervals, days)
|
204 |
+
chain, exp = self.fetch_option_chain(symbol.upper())
|
205 |
+
stock_data['RSI'] = ta.momentum.rsi(stock_data['Close'], window=14)
|
206 |
+
stock_data = stock_data.drop(columns=['Volume'])
|
207 |
+
stock_data['Prev_RSI'] = stock_data['RSI'].shift(1)
|
208 |
+
stock_data['Signal'] = 0
|
209 |
+
call_condition = (stock_data['RSI'] > 60) & (stock_data['Prev_RSI'] < 60)
|
210 |
+
put_condition = (stock_data['RSI'] < 40) & (stock_data['Prev_RSI'] > 40)
|
211 |
+
stock_data.loc[call_condition, 'Signal'] = 1
|
212 |
+
stock_data.loc[put_condition, 'Signal'] = 2
|
213 |
+
stock_data = stock_data.dropna().reset_index(drop=True)
|
214 |
+
|
215 |
+
def floor_to_nearest(value, nearest):
|
216 |
+
return math.ceil(value / nearest) * nearest
|
217 |
+
|
218 |
+
stock_data['Option'] = stock_data['Close'].apply(lambda x: floor_to_nearest(x, rounding_value))
|
219 |
+
|
220 |
+
stock_data['direction'] = np.where(stock_data['Signal'] == 2, "PE", np.where(stock_data['Signal'] == 1, "CE", ""))
|
221 |
+
stock_data['symbol'] = exp + stock_data['Option'].astype(str) + stock_data['direction']
|
222 |
+
return stock_data
|