jarguello76's picture
Update app.py
a37e38f verified
raw
history blame
10.9 kB
import os
import gradio as gr
import requests
import pandas as pd
from smolagents import GradioUI, CodeAgent, HfApiModel
from smolagents import TransformersModel
import torch
from transformers import AutoTokenizer
# Import your custom tools from their modules
from tools import (
WeatherInfoTool, HubStatsTool,
CalculatorTool, CalendarTool, EmailTool, FileManagementTool,
DatabaseQueryTool, TranslationTool, TextToSpeechTool,
SpeechToTextTool, ImageRecognitionTool, NLPTool, APIIntegrationTool
)
from retriever import load_guest_dataset
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
HUGGINGFACE_TOKEN = os.getenv("agents_token")
# Initialize the Hugging Face model with the token
model = TransformersModel(model_id="allenai/OLMo-2-0425-1B-Instruct")
# Initialize the web search tool
# search_tool = DuckDuckGoSearchTool()
# Initialize the weather tool
weather_info_tool = WeatherInfoTool()
# Initialize the Hub stats tool
hub_stats_tool = HubStatsTool()
# Initialize additional tools
calculator_tool = CalculatorTool()
calendar_tool = CalendarTool()
email_tool = EmailTool(smtp_server="smtp.example.com", smtp_port=587, email="your_email@example.com", password="your_password")
file_management_tool = FileManagementTool()
database_query_tool = DatabaseQueryTool(db_path="example.db")
translation_tool = TranslationTool()
text_to_speech_tool = TextToSpeechTool()
speech_to_text_tool = SpeechToTextTool()
image_recognition_tool = ImageRecognitionTool()
nlp_tool = NLPTool()
api_integration_tool = APIIntegrationTool()
# Load the guest dataset and initialize the guest info tool
guest_info_tool = load_guest_dataset()
# Create AgentChen with all the tools
AgentChen = CodeAgent(
tools=[
guest_info_tool, weather_info_tool, hub_stats_tool, search_tool,
calculator_tool, calendar_tool, email_tool, file_management_tool,
database_query_tool, translation_tool, text_to_speech_tool,
speech_to_text_tool, image_recognition_tool, nlp_tool, api_integration_tool
],
model=model,
add_base_tools=True, # Add any additional base tools
planning_interval=3 # Enable planning every 3 steps
)
class AgentChenWrapper:
def __init__(self):
self.agent = AgentChen
print("AgentChenWrapper initialized.")
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM-135M-Instruct")
# Tokenize the input text with a specified maximum length
inputs = tokenizer(
question,
return_tensors="pt",
truncation=True,
max_length=2048,
padding="max_length"
)
# Use the CodeAgent instance to generate the answer
answer = self.agent(question)
print(f"Agent returning answer: {answer}")
return answer
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the AgentChen on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent = AgentChenWrapper()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)