Spaces:
Runtime error
Runtime error
import spaces | |
from diffusers import AutoPipelineForImage2Image, AutoPipelineForText2Image | |
import torch | |
import os | |
import gradio as gr | |
import time | |
import math | |
from PIL import Image | |
import numpy as np | |
try: | |
import intel_extension_for_pytorch as ipex | |
except: | |
pass | |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None) | |
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None) | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
# Device management based on available hardware | |
device = torch.device( | |
"cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" | |
) | |
torch_device = device | |
torch_dtype = torch.float16 if device == "cuda" else torch.float32 | |
print(f"Device: {device}") | |
print(f"Safety Checker: {SAFETY_CHECKER}") | |
print(f"Torch Compile: {TORCH_COMPILE}") | |
# Loading model pipelines | |
if SAFETY_CHECKER == "True": | |
i2i_pipe = AutoPipelineForImage2Image.from_pretrained( | |
"stabilityai/sdxl-turbo", | |
torch_dtype=torch_dtype, | |
variant="fp16" if torch_dtype == torch.float16 else "fp32", | |
) | |
t2i_pipe = AutoPipelineForText2Image.from_pretrained( | |
"stabilityai/sdxl-turbo", | |
torch_dtype=torch_dtype, | |
variant="fp16" if torch_dtype == torch.float16 else "fp32", | |
) | |
else: | |
i2i_pipe = AutoPipelineForImage2Image.from_pretrained( | |
"stabilityai/sdxl-turbo", | |
safety_checker=None, | |
torch_dtype=torch_dtype, | |
variant="fp16" if torch_dtype == torch.float16 else "fp32", | |
) | |
t2i_pipe = AutoPipelineForText2Image.from_pretrained( | |
"stabilityai/sdxl-turbo", | |
safety_checker=None, | |
torch_dtype=torch_dtype, | |
variant="fp16" if torch_dtype == torch.float16 else "fp32", | |
) | |
# Method for Kiwi model handling | |
def kiwi_process(prompt, seed=123123, width=512, height=512): | |
""" | |
Custom Kiwi method for image generation using advanced AI techniques. | |
""" | |
print(f"Generating Kiwi-style image for prompt: {prompt}") | |
generator = torch.manual_seed(seed) | |
result = t2i_pipe( | |
prompt=prompt, | |
generator=generator, | |
num_inference_steps=25, # Using more steps for finer results | |
guidance_scale=7.5, # More refined guidance | |
width=width, | |
height=height, | |
output_type="pil", | |
) | |
return result.images[0] | |
# Resize image helper | |
def resize_crop(image, size=512): | |
image = image.convert("RGB") | |
w, h = image.size | |
image = image.resize((size, int(size * (h / w))), Image.BICUBIC) | |
return image | |
# Main prediction method | |
async def predict(init_image, prompt, strength, steps, seed=123123): | |
if init_image is not None: | |
init_image = resize_crop(init_image) | |
generator = torch.manual_seed(seed) | |
results = i2i_pipe( | |
prompt=prompt, | |
image=init_image, | |
generator=generator, | |
num_inference_steps=steps, | |
guidance_scale=0.0, | |
strength=strength, | |
width=512, | |
height=512, | |
output_type="pil", | |
) | |
else: | |
return kiwi_process(prompt, seed) # Using the Kiwi method for text-to-image | |
# Gradio UI with a custom description for Kiwi | |
css = """ | |
#container{ | |
margin: 0 auto; | |
max-width: 80rem; | |
} | |
#intro{ | |
max-width: 100%; | |
text-align: center; | |
margin: 0 auto; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
init_image_state = gr.State() | |
with gr.Column(elem_id="container"): | |
gr.Markdown( | |
"""# Kiwi Image Generator Demo | |
## Harnessing the Power of Kiwi AI | |
This demo integrates the Kiwi AI model to generate high-quality images using cutting-edge techniques like quantization and pruning. | |
""", | |
elem_id="intro", | |
) | |
with gr.Row(): | |
prompt = gr.Textbox( | |
placeholder="Insert your prompt for Kiwi here:", | |
scale=5, | |
container=False, | |
) | |
generate_bt = gr.Button("Generate with Kiwi", scale=1) | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image( | |
sources=["upload", "webcam", "clipboard"], | |
label="Upload or Capture Image", | |
type="pil", | |
) | |
with gr.Column(): | |
image = gr.Image(type="filepath") | |
with gr.Accordion("Advanced options", open=False): | |
strength = gr.Slider( | |
label="Strength", | |
value=0.7, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.001, | |
) | |
steps = gr.Slider( | |
label="Steps", value=25, minimum=1, maximum=50, step=1 | |
) | |
seed = gr.Slider( | |
randomize=True, | |
minimum=0, | |
maximum=12013012031030, | |
label="Seed", | |
step=1, | |
) | |
inputs = [image_input, prompt, strength, steps, seed] | |
generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
prompt.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
strength.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
demo.queue() | |
demo.launch() | |