Spaces:
Paused
Paused
import gradio as gr | |
from diffusers import DiffusionPipeline | |
import os | |
import torch | |
import shutil | |
import spaces | |
def find_cuda(): | |
# Check if CUDA_HOME or CUDA_PATH environment variables are set | |
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH') | |
if cuda_home and os.path.exists(cuda_home): | |
return cuda_home | |
# Search for the nvcc executable in the system's PATH | |
nvcc_path = shutil.which('nvcc') | |
if nvcc_path: | |
# Remove the 'bin/nvcc' part to get the CUDA installation path | |
cuda_path = os.path.dirname(os.path.dirname(nvcc_path)) | |
return cuda_path | |
return None | |
cuda_path = find_cuda() | |
if cuda_path: | |
print(f"CUDA installation found at: {cuda_path}") | |
else: | |
print("CUDA installation not found") | |
# check if cuda is available | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# load the pipeline/model | |
pipeline = DiffusionPipeline.from_pretrained("jadechoghari/mar", trust_remote_code=True, custom_pipeline="jadechoghari/mar") | |
# function that generates images | |
def generate_image(seed, num_ar_steps, class_labels, cfg_scale, cfg_schedule): | |
generated_image = pipeline( | |
model_type="mar_huge", # using mar_huge | |
seed=seed, | |
num_ar_steps=num_ar_steps, | |
class_labels=[int(label.strip()) for label in class_labels.split(',')], | |
cfg_scale=cfg_scale, | |
cfg_schedule=cfg_schedule, | |
output_dir="./images" | |
) | |
return generated_image | |
with gr.Blocks() as demo: | |
gr.Markdown(""" | |
# MAR Image Generation Demo π | |
Welcome to the demo for **MAR** (Masked Autoregressive Model), a novel approach to image generation that eliminates the need for vector quantization. MAR uses a diffusion process to generate images in a continuous-valued space, resulting in faster, more efficient, and higher-quality outputs. | |
Simply adjust the parameters below to create your custom images in real-time. | |
Make sure to provide valid **ImageNet class labels** to see the translation of text to image. For a complete list of ImageNet classes, check out [this reference](https://deeplearning.cms.waikato.ac.nz/user-guide/class-maps/IMAGENET/). | |
For more details, visit the [GitHub repository](https://github.com/LTH14/mar). | |
""") | |
seed = gr.Number(value=42, label="Seed") | |
num_ar_steps = gr.Slider(minimum=1, maximum=256, value=64, label="Number of AR Steps") | |
class_labels = gr.Textbox(value="207, 360, 388", label="Class Labels (comma-separated ImageNet labels)") | |
cfg_scale = gr.Slider(minimum=1, maximum=10, value=4, label="CFG Scale") | |
cfg_schedule = gr.Dropdown(choices=["constant", "linear"], label="CFG Schedule", value="constant") | |
image_output = gr.Image(label="Generated Image") | |
generate_button = gr.Button("Generate Image") | |
# we link the button to the function and display the output | |
generate_button.click(generate_image, inputs=[seed, num_ar_steps, class_labels, cfg_scale, cfg_schedule], outputs=image_output) | |
demo.launch() | |