Spaces:
Running
on
Zero
Running
on
Zero
# Adapted from https://github.com/jik876/hifi-gan under the MIT license. | |
# LICENSE is in incl_licenses directory. | |
import glob | |
import os | |
import matplotlib | |
import torch | |
from torch.nn.utils import weight_norm | |
matplotlib.use("Agg") | |
import matplotlib.pylab as plt | |
from .meldataset import MAX_WAV_VALUE | |
from scipy.io.wavfile import write | |
def plot_spectrogram(spectrogram): | |
fig, ax = plt.subplots(figsize=(10, 2)) | |
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none") | |
plt.colorbar(im, ax=ax) | |
fig.canvas.draw() | |
plt.close() | |
return fig | |
def plot_spectrogram_clipped(spectrogram, clip_max=2.0): | |
fig, ax = plt.subplots(figsize=(10, 2)) | |
im = ax.imshow( | |
spectrogram, | |
aspect="auto", | |
origin="lower", | |
interpolation="none", | |
vmin=1e-6, | |
vmax=clip_max, | |
) | |
plt.colorbar(im, ax=ax) | |
fig.canvas.draw() | |
plt.close() | |
return fig | |
def init_weights(m, mean=0.0, std=0.01): | |
classname = m.__class__.__name__ | |
if classname.find("Conv") != -1: | |
m.weight.data.normal_(mean, std) | |
def apply_weight_norm(m): | |
classname = m.__class__.__name__ | |
if classname.find("Conv") != -1: | |
weight_norm(m) | |
def get_padding(kernel_size, dilation=1): | |
return int((kernel_size * dilation - dilation) / 2) | |
def load_checkpoint(filepath, device): | |
assert os.path.isfile(filepath) | |
print(f"Loading '{filepath}'") | |
checkpoint_dict = torch.load(filepath, map_location=device) | |
print("Complete.") | |
return checkpoint_dict | |
def save_checkpoint(filepath, obj): | |
print(f"Saving checkpoint to {filepath}") | |
torch.save(obj, filepath) | |
print("Complete.") | |
def scan_checkpoint(cp_dir, prefix, renamed_file=None): | |
# Fallback to original scanning logic first | |
pattern = os.path.join(cp_dir, prefix + "????????") | |
cp_list = glob.glob(pattern) | |
if len(cp_list) > 0: | |
last_checkpoint_path = sorted(cp_list)[-1] | |
print(f"[INFO] Resuming from checkpoint: '{last_checkpoint_path}'") | |
return last_checkpoint_path | |
# If no pattern-based checkpoints are found, check for renamed file | |
if renamed_file: | |
renamed_path = os.path.join(cp_dir, renamed_file) | |
if os.path.isfile(renamed_path): | |
print(f"[INFO] Resuming from renamed checkpoint: '{renamed_file}'") | |
return renamed_path | |
return None | |
def save_audio(audio, path, sr): | |
# wav: torch with 1d shape | |
audio = audio * MAX_WAV_VALUE | |
audio = audio.cpu().numpy().astype("int16") | |
write(path, sr, audio) | |