Spaces:
Running
on
Zero
Running
on
Zero
# Adapted from https://github.com/jik876/hifi-gan under the MIT license. | |
# LICENSE is in incl_licenses directory. | |
from __future__ import absolute_import, division, print_function, unicode_literals | |
import os | |
import argparse | |
import json | |
import torch | |
import librosa | |
from utils import load_checkpoint | |
from meldataset import get_mel_spectrogram | |
from scipy.io.wavfile import write | |
from env import AttrDict | |
from meldataset import MAX_WAV_VALUE | |
from bigvgan import BigVGAN as Generator | |
h = None | |
device = None | |
torch.backends.cudnn.benchmark = False | |
def inference(a, h): | |
generator = Generator(h, use_cuda_kernel=a.use_cuda_kernel).to(device) | |
state_dict_g = load_checkpoint(a.checkpoint_file, device) | |
generator.load_state_dict(state_dict_g["generator"]) | |
filelist = os.listdir(a.input_wavs_dir) | |
os.makedirs(a.output_dir, exist_ok=True) | |
generator.eval() | |
generator.remove_weight_norm() | |
with torch.no_grad(): | |
for i, filname in enumerate(filelist): | |
# Load the ground truth audio and resample if necessary | |
wav, sr = librosa.load( | |
os.path.join(a.input_wavs_dir, filname), sr=h.sampling_rate, mono=True | |
) | |
wav = torch.FloatTensor(wav).to(device) | |
# Compute mel spectrogram from the ground truth audio | |
x = get_mel_spectrogram(wav.unsqueeze(0), generator.h) | |
y_g_hat = generator(x) | |
audio = y_g_hat.squeeze() | |
audio = audio * MAX_WAV_VALUE | |
audio = audio.cpu().numpy().astype("int16") | |
output_file = os.path.join( | |
a.output_dir, os.path.splitext(filname)[0] + "_generated.wav" | |
) | |
write(output_file, h.sampling_rate, audio) | |
print(output_file) | |
def main(): | |
print("Initializing Inference Process..") | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--input_wavs_dir", default="test_files") | |
parser.add_argument("--output_dir", default="generated_files") | |
parser.add_argument("--checkpoint_file", required=True) | |
parser.add_argument("--use_cuda_kernel", action="store_true", default=False) | |
a = parser.parse_args() | |
config_file = os.path.join(os.path.split(a.checkpoint_file)[0], "config.json") | |
with open(config_file) as f: | |
data = f.read() | |
global h | |
json_config = json.loads(data) | |
h = AttrDict(json_config) | |
torch.manual_seed(h.seed) | |
global device | |
if torch.cuda.is_available(): | |
torch.cuda.manual_seed(h.seed) | |
device = torch.device("cuda") | |
else: | |
device = torch.device("cpu") | |
inference(a, h) | |
if __name__ == "__main__": | |
main() | |