Spaces:
Running
on
Zero
Running
on
Zero
# | |
# Code is adapted from https://github.com/lucidrains/e2-tts-pytorch | |
# | |
""" | |
ein notation: | |
b - batch | |
n - sequence | |
nt - text sequence | |
nw - raw wave length | |
d - dimension | |
""" | |
from __future__ import annotations | |
from typing import Dict, Any, Optional | |
from functools import partial | |
import torch | |
from torch import nn | |
from torch.nn import Module, ModuleList, Sequential, Linear | |
import torch.nn.functional as F | |
from torchdiffeq import odeint | |
from einops.layers.torch import Rearrange | |
from einops import rearrange, repeat, pack, unpack | |
from x_transformers import Attention, FeedForward, RMSNorm, AdaptiveRMSNorm | |
from x_transformers.x_transformers import RotaryEmbedding | |
from gateloop_transformer import SimpleGateLoopLayer | |
from tensor_typing import Float | |
class Identity(Module): | |
def forward(self, x, **kwargs): | |
return x | |
class AdaLNZero(Module): | |
def __init__(self, dim: int, dim_condition: Optional[int] = None, init_bias_value: float = -2.): | |
super().__init__() | |
dim_condition = dim_condition or dim | |
self.to_gamma = nn.Linear(dim_condition, dim) | |
nn.init.zeros_(self.to_gamma.weight) | |
nn.init.constant_(self.to_gamma.bias, init_bias_value) | |
def forward(self, x: torch.Tensor, *, condition: torch.Tensor) -> torch.Tensor: | |
if condition.ndim == 2: | |
condition = rearrange(condition, 'b d -> b 1 d') | |
gamma = self.to_gamma(condition).sigmoid() | |
return x * gamma | |
def exists(v: Any) -> bool: | |
return v is not None | |
def default(v: Any, d: Any) -> Any: | |
return v if exists(v) else d | |
def divisible_by(num: int, den: int) -> bool: | |
return (num % den) == 0 | |
class Transformer(Module): | |
def __init__( | |
self, | |
*, | |
dim: int, | |
depth: int = 8, | |
cond_on_time: bool = True, | |
skip_connect_type: str = 'concat', | |
abs_pos_emb: bool = True, | |
max_seq_len: int = 8192, | |
heads: int = 8, | |
dim_head: int = 64, | |
num_gateloop_layers: int = 1, | |
dropout: float = 0.1, | |
num_registers: int = 32, | |
attn_kwargs: Dict[str, Any] = dict(gate_value_heads=True, softclamp_logits=True), | |
ff_kwargs: Dict[str, Any] = dict() | |
): | |
super().__init__() | |
assert divisible_by(depth, 2), 'depth needs to be even' | |
self.max_seq_len = max_seq_len | |
self.abs_pos_emb = nn.Embedding(max_seq_len, dim) if abs_pos_emb else None | |
self.dim = dim | |
self.skip_connect_type = skip_connect_type | |
needs_skip_proj = skip_connect_type == 'concat' | |
self.depth = depth | |
self.layers = ModuleList([]) | |
self.num_registers = num_registers | |
self.registers = nn.Parameter(torch.zeros(num_registers, dim)) | |
nn.init.normal_(self.registers, std=0.02) | |
self.rotary_emb = RotaryEmbedding(dim_head) | |
self.cond_on_time = cond_on_time | |
rmsnorm_klass = AdaptiveRMSNorm if cond_on_time else RMSNorm | |
postbranch_klass = partial(AdaLNZero, dim=dim) if cond_on_time else Identity | |
self.time_cond_mlp = Sequential( | |
Rearrange('... -> ... 1'), | |
Linear(1, dim), | |
nn.SiLU() | |
) if cond_on_time else nn.Identity() | |
for ind in range(depth): | |
is_later_half = ind >= (depth // 2) | |
gateloop = SimpleGateLoopLayer(dim=dim) | |
attn_norm = rmsnorm_klass(dim) | |
attn = Attention(dim=dim, heads=heads, dim_head=dim_head, dropout=dropout, **attn_kwargs) | |
attn_adaln_zero = postbranch_klass() | |
ff_norm = rmsnorm_klass(dim) | |
ff = FeedForward(dim=dim, glu=True, dropout=dropout, **ff_kwargs) | |
ff_adaln_zero = postbranch_klass() | |
skip_proj = Linear(dim * 2, dim, bias=False) if needs_skip_proj and is_later_half else None | |
self.layers.append(ModuleList([ | |
gateloop, skip_proj, attn_norm, attn, attn_adaln_zero, | |
ff_norm, ff, ff_adaln_zero | |
])) | |
self.final_norm = RMSNorm(dim) | |
def forward( | |
self, | |
x: Float['b n d'], | |
times: Optional[Float['b'] | Float['']] = None, | |
) -> torch.Tensor: | |
batch, seq_len, device = *x.shape[:2], x.device | |
assert not (exists(times) ^ self.cond_on_time), '`times` must be passed in if `cond_on_time` is set to `True` and vice versa' | |
norm_kwargs = {} | |
if exists(self.abs_pos_emb): | |
# assert seq_len <= self.max_seq_len, f'{seq_len} exceeds the set `max_seq_len` ({self.max_seq_len}) on Transformer' | |
seq = torch.arange(seq_len, device=device) | |
x = x + self.abs_pos_emb(seq) | |
if exists(times): | |
if times.ndim == 0: | |
times = repeat(times, ' -> b', b=batch) | |
times = self.time_cond_mlp(times) | |
norm_kwargs['condition'] = times | |
registers = repeat(self.registers, 'r d -> b r d', b=batch) | |
x, registers_packed_shape = pack((registers, x), 'b * d') | |
rotary_pos_emb = self.rotary_emb.forward_from_seq_len(x.shape[-2]) | |
skips = [] | |
for ind, ( | |
gateloop, maybe_skip_proj, attn_norm, attn, maybe_attn_adaln_zero, | |
ff_norm, ff, maybe_ff_adaln_zero | |
) in enumerate(self.layers): | |
layer = ind + 1 | |
is_first_half = layer <= (self.depth // 2) | |
if is_first_half: | |
skips.append(x) | |
else: | |
skip = skips.pop() | |
if self.skip_connect_type == 'concat': | |
x = torch.cat((x, skip), dim=-1) | |
x = maybe_skip_proj(x) | |
x = gateloop(x) + x | |
attn_out = attn(attn_norm(x, **norm_kwargs), rotary_pos_emb=rotary_pos_emb) | |
x = x + maybe_attn_adaln_zero(attn_out, **norm_kwargs) | |
ff_out = ff(ff_norm(x, **norm_kwargs)) | |
x = x + maybe_ff_adaln_zero(ff_out, **norm_kwargs) | |
assert len(skips) == 0 | |
_, x = unpack(x, registers_packed_shape, 'b * d') | |
return self.final_norm(x) | |
class VoiceRestore(nn.Module): | |
def __init__( | |
self, | |
sigma: float = 0.0, | |
transformer: Optional[Dict[str, Any]] = None, | |
odeint_kwargs: Optional[Dict[str, Any]] = None, | |
num_channels: int = 100, | |
): | |
super().__init__() | |
self.sigma = sigma | |
self.num_channels = num_channels | |
self.transformer = Transformer(**transformer, cond_on_time=True) | |
self.odeint_kwargs = odeint_kwargs or {'atol': 1e-5, 'rtol': 1e-5, 'method': 'midpoint'} | |
self.proj_in = nn.Linear(num_channels, self.transformer.dim) | |
self.cond_proj = nn.Linear(num_channels, self.transformer.dim) | |
self.to_pred = nn.Linear(self.transformer.dim, num_channels) | |
def transformer_with_pred_head(self, x: torch.Tensor, times: torch.Tensor, cond: Optional[torch.Tensor] = None) -> torch.Tensor: | |
x = self.proj_in(x) | |
if cond is not None: | |
cond_proj = self.cond_proj(cond) | |
x = x + cond_proj | |
attended = self.transformer(x, times=times) | |
return self.to_pred(attended) | |
def cfg_transformer_with_pred_head( | |
self, | |
*args, | |
cond=None, | |
mask=None, | |
cfg_strength: float = 0.5, | |
**kwargs, | |
): | |
pred = self.transformer_with_pred_head(*args, **kwargs, cond=cond) | |
if cfg_strength < 1e-5: | |
return pred * mask.unsqueeze(-1) if mask is not None else pred | |
null_pred = self.transformer_with_pred_head(*args, **kwargs, cond=None) | |
result = pred + (pred - null_pred) * cfg_strength | |
return result * mask.unsqueeze(-1) if mask is not None else result | |
def sample(self, processed: torch.Tensor, steps: int = 32, cfg_strength: float = 0.5) -> torch.Tensor: | |
self.eval() | |
times = torch.linspace(0, 1, steps, device=processed.device) | |
def ode_fn(t: torch.Tensor, x: torch.Tensor) -> torch.Tensor: | |
return self.cfg_transformer_with_pred_head(x, times=t, cond=processed, cfg_strength=cfg_strength) | |
y0 = torch.randn_like(processed) | |
trajectory = odeint(ode_fn, y0, times, **self.odeint_kwargs) | |
restored = trajectory[-1] | |
return restored |