Spaces:
Runtime error
Runtime error
| import gc | |
| import logging | |
| from model import CausalDiffusion | |
| from utils.dataset import ShardingLMDBDataset, cycle | |
| from utils.misc import set_seed | |
| import torch.distributed as dist | |
| from omegaconf import OmegaConf | |
| import torch | |
| import wandb | |
| import time | |
| import os | |
| from utils.distributed import EMA_FSDP, barrier, fsdp_wrap, fsdp_state_dict, launch_distributed_job | |
| class Trainer: | |
| def __init__(self, config): | |
| self.config = config | |
| self.step = 0 | |
| # Step 1: Initialize the distributed training environment (rank, seed, dtype, logging etc.) | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| torch.backends.cudnn.allow_tf32 = True | |
| launch_distributed_job() | |
| global_rank = dist.get_rank() | |
| self.dtype = torch.bfloat16 if config.mixed_precision else torch.float32 | |
| self.device = torch.cuda.current_device() | |
| self.is_main_process = global_rank == 0 | |
| self.causal = config.causal | |
| self.disable_wandb = config.disable_wandb | |
| # use a random seed for the training | |
| if config.seed == 0: | |
| random_seed = torch.randint(0, 10000000, (1,), device=self.device) | |
| dist.broadcast(random_seed, src=0) | |
| config.seed = random_seed.item() | |
| set_seed(config.seed + global_rank) | |
| if self.is_main_process and not self.disable_wandb: | |
| wandb.login(host=config.wandb_host, key=config.wandb_key) | |
| wandb.init( | |
| config=OmegaConf.to_container(config, resolve=True), | |
| name=config.config_name, | |
| mode="online", | |
| entity=config.wandb_entity, | |
| project=config.wandb_project, | |
| dir=config.wandb_save_dir | |
| ) | |
| self.output_path = config.logdir | |
| # Step 2: Initialize the model and optimizer | |
| self.model = CausalDiffusion(config, device=self.device) | |
| self.model.generator = fsdp_wrap( | |
| self.model.generator, | |
| sharding_strategy=config.sharding_strategy, | |
| mixed_precision=config.mixed_precision, | |
| wrap_strategy=config.generator_fsdp_wrap_strategy | |
| ) | |
| self.model.text_encoder = fsdp_wrap( | |
| self.model.text_encoder, | |
| sharding_strategy=config.sharding_strategy, | |
| mixed_precision=config.mixed_precision, | |
| wrap_strategy=config.text_encoder_fsdp_wrap_strategy | |
| ) | |
| if not config.no_visualize or config.load_raw_video: | |
| self.model.vae = self.model.vae.to( | |
| device=self.device, dtype=torch.bfloat16 if config.mixed_precision else torch.float32) | |
| self.generator_optimizer = torch.optim.AdamW( | |
| [param for param in self.model.generator.parameters() | |
| if param.requires_grad], | |
| lr=config.lr, | |
| betas=(config.beta1, config.beta2), | |
| weight_decay=config.weight_decay | |
| ) | |
| # Step 3: Initialize the dataloader | |
| dataset = ShardingLMDBDataset(config.data_path, max_pair=int(1e8)) | |
| sampler = torch.utils.data.distributed.DistributedSampler( | |
| dataset, shuffle=True, drop_last=True) | |
| dataloader = torch.utils.data.DataLoader( | |
| dataset, | |
| batch_size=config.batch_size, | |
| sampler=sampler, | |
| num_workers=8) | |
| if dist.get_rank() == 0: | |
| print("DATASET SIZE %d" % len(dataset)) | |
| self.dataloader = cycle(dataloader) | |
| ############################################################################################################## | |
| # 6. Set up EMA parameter containers | |
| rename_param = ( | |
| lambda name: name.replace("_fsdp_wrapped_module.", "") | |
| .replace("_checkpoint_wrapped_module.", "") | |
| .replace("_orig_mod.", "") | |
| ) | |
| self.name_to_trainable_params = {} | |
| for n, p in self.model.generator.named_parameters(): | |
| if not p.requires_grad: | |
| continue | |
| renamed_n = rename_param(n) | |
| self.name_to_trainable_params[renamed_n] = p | |
| ema_weight = config.ema_weight | |
| self.generator_ema = None | |
| if (ema_weight is not None) and (ema_weight > 0.0): | |
| print(f"Setting up EMA with weight {ema_weight}") | |
| self.generator_ema = EMA_FSDP(self.model.generator, decay=ema_weight) | |
| ############################################################################################################## | |
| # 7. (If resuming) Load the model and optimizer, lr_scheduler, ema's statedicts | |
| if getattr(config, "generator_ckpt", False): | |
| print(f"Loading pretrained generator from {config.generator_ckpt}") | |
| state_dict = torch.load(config.generator_ckpt, map_location="cpu") | |
| if "generator" in state_dict: | |
| state_dict = state_dict["generator"] | |
| elif "model" in state_dict: | |
| state_dict = state_dict["model"] | |
| self.model.generator.load_state_dict( | |
| state_dict, strict=True | |
| ) | |
| ############################################################################################################## | |
| # Let's delete EMA params for early steps to save some computes at training and inference | |
| if self.step < config.ema_start_step: | |
| self.generator_ema = None | |
| self.max_grad_norm = 10.0 | |
| self.previous_time = None | |
| def save(self): | |
| print("Start gathering distributed model states...") | |
| generator_state_dict = fsdp_state_dict( | |
| self.model.generator) | |
| if self.config.ema_start_step < self.step: | |
| state_dict = { | |
| "generator": generator_state_dict, | |
| "generator_ema": self.generator_ema.state_dict(), | |
| } | |
| else: | |
| state_dict = { | |
| "generator": generator_state_dict, | |
| } | |
| if self.is_main_process: | |
| os.makedirs(os.path.join(self.output_path, | |
| f"checkpoint_model_{self.step:06d}"), exist_ok=True) | |
| torch.save(state_dict, os.path.join(self.output_path, | |
| f"checkpoint_model_{self.step:06d}", "model.pt")) | |
| print("Model saved to", os.path.join(self.output_path, | |
| f"checkpoint_model_{self.step:06d}", "model.pt")) | |
| def train_one_step(self, batch): | |
| self.log_iters = 1 | |
| if self.step % 20 == 0: | |
| torch.cuda.empty_cache() | |
| # Step 1: Get the next batch of text prompts | |
| text_prompts = batch["prompts"] | |
| if not self.config.load_raw_video: # precomputed latent | |
| clean_latent = batch["ode_latent"][:, -1].to( | |
| device=self.device, dtype=self.dtype) | |
| else: # encode raw video to latent | |
| frames = batch["frames"].to( | |
| device=self.device, dtype=self.dtype) | |
| with torch.no_grad(): | |
| clean_latent = self.model.vae.encode_to_latent( | |
| frames).to(device=self.device, dtype=self.dtype) | |
| image_latent = clean_latent[:, 0:1, ] | |
| batch_size = len(text_prompts) | |
| image_or_video_shape = list(self.config.image_or_video_shape) | |
| image_or_video_shape[0] = batch_size | |
| # Step 2: Extract the conditional infos | |
| with torch.no_grad(): | |
| conditional_dict = self.model.text_encoder( | |
| text_prompts=text_prompts) | |
| if not getattr(self, "unconditional_dict", None): | |
| unconditional_dict = self.model.text_encoder( | |
| text_prompts=[self.config.negative_prompt] * batch_size) | |
| unconditional_dict = {k: v.detach() | |
| for k, v in unconditional_dict.items()} | |
| self.unconditional_dict = unconditional_dict # cache the unconditional_dict | |
| else: | |
| unconditional_dict = self.unconditional_dict | |
| # Step 3: Train the generator | |
| generator_loss, log_dict = self.model.generator_loss( | |
| image_or_video_shape=image_or_video_shape, | |
| conditional_dict=conditional_dict, | |
| unconditional_dict=unconditional_dict, | |
| clean_latent=clean_latent, | |
| initial_latent=image_latent | |
| ) | |
| self.generator_optimizer.zero_grad() | |
| generator_loss.backward() | |
| generator_grad_norm = self.model.generator.clip_grad_norm_( | |
| self.max_grad_norm) | |
| self.generator_optimizer.step() | |
| # Increment the step since we finished gradient update | |
| self.step += 1 | |
| wandb_loss_dict = { | |
| "generator_loss": generator_loss.item(), | |
| "generator_grad_norm": generator_grad_norm.item(), | |
| } | |
| # Step 4: Logging | |
| if self.is_main_process: | |
| if not self.disable_wandb: | |
| wandb.log(wandb_loss_dict, step=self.step) | |
| if self.step % self.config.gc_interval == 0: | |
| if dist.get_rank() == 0: | |
| logging.info("DistGarbageCollector: Running GC.") | |
| gc.collect() | |
| # Step 5. Create EMA params | |
| # TODO: Implement EMA | |
| def generate_video(self, pipeline, prompts, image=None): | |
| batch_size = len(prompts) | |
| sampled_noise = torch.randn( | |
| [batch_size, 21, 16, 60, 104], device="cuda", dtype=self.dtype | |
| ) | |
| video, _ = pipeline.inference( | |
| noise=sampled_noise, | |
| text_prompts=prompts, | |
| return_latents=True | |
| ) | |
| current_video = video.permute(0, 1, 3, 4, 2).cpu().numpy() * 255.0 | |
| return current_video | |
| def train(self): | |
| while True: | |
| batch = next(self.dataloader) | |
| self.train_one_step(batch) | |
| if (not self.config.no_save) and self.step % self.config.log_iters == 0: | |
| torch.cuda.empty_cache() | |
| self.save() | |
| torch.cuda.empty_cache() | |
| barrier() | |
| if self.is_main_process: | |
| current_time = time.time() | |
| if self.previous_time is None: | |
| self.previous_time = current_time | |
| else: | |
| if not self.disable_wandb: | |
| wandb.log({"per iteration time": current_time - self.previous_time}, step=self.step) | |
| self.previous_time = current_time | |