itzjunayed commited on
Commit
c25bf28
·
verified ·
1 Parent(s): 6a76845

updating again

Browse files
Files changed (1) hide show
  1. app.py +55 -57
app.py CHANGED
@@ -1,59 +1,57 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- # Example of a freely accessible model
5
- client = InferenceClient("gpt-3.5-turbo")
6
-
7
- def respond(
8
- message,
9
- history: list[tuple[str, str]],
10
- system_message,
11
- max_tokens,
12
- temperature,
13
- top_p,
14
- ):
15
- messages = [{"role": "system", "content": system_message}]
16
-
17
- for val in history:
18
- if val[0]:
19
- messages.append({"role": "user", "content": val[0]})
20
- if val[1]:
21
- messages.append({"role": "assistant", "content": val[1]})
22
-
23
- messages.append({"role": "user", "content": message})
24
-
25
- response = ""
26
-
27
- for message in client.chat_completion(
28
- messages,
29
- max_tokens=max_tokens,
30
- stream=True,
31
- temperature=temperature,
32
- top_p=top_p,
33
- ):
34
- token = message.choices[0].delta.content
35
-
36
- response += token
37
- yield response
38
-
39
- """
40
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
41
- """
42
- demo = gr.ChatInterface(
43
- respond,
44
- additional_inputs=[
45
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
46
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
47
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
48
- gr.Slider(
49
- minimum=0.1,
50
- maximum=1.0,
51
- value=0.95,
52
- step=0.05,
53
- label="Top-p (nucleus sampling)",
54
- ),
55
- ],
56
  )
57
 
58
- if __name__ == "__main__":
59
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
2
+ from transformers import pipeline
3
+ import torch
4
+
5
+ model_id = "MaziyarPanahi/Llama-3-70B-Instruct-DPO-v0.2"
6
+
7
+ model = AutoModelForCausalLM.from_pretrained(
8
+ model_id,
9
+ torch_dtype=torch.bfloat16,
10
+ device_map="auto",
11
+ trust_remote_code=True,
12
+ # attn_implementation="flash_attention_2"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  )
14
 
15
+ tokenizer = AutoTokenizer.from_pretrained(
16
+ model_id,
17
+ trust_remote_code=True
18
+ )
19
+
20
+ streamer = TextStreamer(tokenizer)
21
+
22
+ pipeline = pipeline(
23
+ "text-generation",
24
+ model=model,
25
+ tokenizer=tokenizer,
26
+ model_kwargs={"torch_dtype": torch.bfloat16},
27
+ streamer=streamer
28
+ )
29
+
30
+ # Then you can use the pipeline to generate text.
31
+
32
+ messages = [
33
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
34
+ {"role": "user", "content": "Who are you?"},
35
+ ]
36
+
37
+ prompt = tokenizer.apply_chat_template(
38
+ messages,
39
+ tokenize=False,
40
+ add_generation_prompt=True
41
+ )
42
+
43
+ terminators = [
44
+ tokenizer.eos_token_id,
45
+ tokenizer.convert_tokens_to_ids("<|im_end|>"),
46
+ tokenizer.convert_tokens_to_ids("<|eot_id|>") # safer to have this too
47
+ ]
48
+
49
+ outputs = pipeline(
50
+ prompt,
51
+ max_new_tokens=2048,
52
+ eos_token_id=terminators,
53
+ do_sample=True,
54
+ temperature=0.6,
55
+ top_p=0.95,
56
+ )
57
+ print(outputs[0]["generated_text"][len(prompt):])