itzjunayed commited on
Commit
6a76845
·
verified ·
1 Parent(s): 98bded7

using gpt 3.5

Browse files
Files changed (1) hide show
  1. app.py +45 -20
app.py CHANGED
@@ -1,33 +1,58 @@
1
  import gradio as gr
2
- from transformers import AutoModelForCausalLM, AutoTokenizer
3
- import torch
4
 
5
- # Load the model and tokenizer
6
- model_name = "facebook/opt-1.3b"
7
- tokenizer = AutoTokenizer.from_pretrained(model_name)
8
- model = AutoModelForCausalLM.from_pretrained(model_name)
9
 
10
- def respond(message, history):
11
- # Tokenize input
12
- inputs = tokenizer.encode(message + tokenizer.eos_token, return_tensors="pt")
 
 
 
 
 
 
13
 
14
- # Generate response
15
- outputs = model.generate(inputs, max_length=500, pad_token_id=tokenizer.eos_token_id)
16
- response = tokenizer.decode(outputs[0], skip_special_tokens=True)
 
 
17
 
18
- # Append user input and response to history
19
- history.append((message, response))
20
- return history
21
 
22
- # Gradio interface
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  demo = gr.ChatInterface(
24
  respond,
25
  additional_inputs=[
26
- gr.Textbox(label="User Input")
 
 
 
 
 
 
 
 
 
27
  ],
28
- title="OPT-1.3B Chatbot",
29
- description="A chatbot powered by the OPT-1.3B model from Facebook.",
30
- theme="compact",
31
  )
32
 
33
  if __name__ == "__main__":
 
1
  import gradio as gr
2
+ from huggingface_hub import InferenceClient
 
3
 
4
+ # Example of a freely accessible model
5
+ client = InferenceClient("gpt-3.5-turbo")
 
 
6
 
7
+ def respond(
8
+ message,
9
+ history: list[tuple[str, str]],
10
+ system_message,
11
+ max_tokens,
12
+ temperature,
13
+ top_p,
14
+ ):
15
+ messages = [{"role": "system", "content": system_message}]
16
 
17
+ for val in history:
18
+ if val[0]:
19
+ messages.append({"role": "user", "content": val[0]})
20
+ if val[1]:
21
+ messages.append({"role": "assistant", "content": val[1]})
22
 
23
+ messages.append({"role": "user", "content": message})
 
 
24
 
25
+ response = ""
26
+
27
+ for message in client.chat_completion(
28
+ messages,
29
+ max_tokens=max_tokens,
30
+ stream=True,
31
+ temperature=temperature,
32
+ top_p=top_p,
33
+ ):
34
+ token = message.choices[0].delta.content
35
+
36
+ response += token
37
+ yield response
38
+
39
+ """
40
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
41
+ """
42
  demo = gr.ChatInterface(
43
  respond,
44
  additional_inputs=[
45
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
46
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
47
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
48
+ gr.Slider(
49
+ minimum=0.1,
50
+ maximum=1.0,
51
+ value=0.95,
52
+ step=0.05,
53
+ label="Top-p (nucleus sampling)",
54
+ ),
55
  ],
 
 
 
56
  )
57
 
58
  if __name__ == "__main__":