ironjr commited on
Commit
186c7d4
1 Parent(s): 66a1ac1

Upload folder using huggingface_hub

Browse files
Files changed (34) hide show
  1. submodules/depth-diff-gaussian-rasterization-min/CMakeLists.txt +36 -0
  2. submodules/depth-diff-gaussian-rasterization-min/LICENSE.md +83 -0
  3. submodules/depth-diff-gaussian-rasterization-min/README.md +19 -0
  4. submodules/depth-diff-gaussian-rasterization-min/cuda_rasterizer/auxiliary.h +175 -0
  5. submodules/depth-diff-gaussian-rasterization-min/cuda_rasterizer/backward.cu +695 -0
  6. submodules/depth-diff-gaussian-rasterization-min/cuda_rasterizer/backward.h +70 -0
  7. submodules/depth-diff-gaussian-rasterization-min/cuda_rasterizer/config.h +19 -0
  8. submodules/depth-diff-gaussian-rasterization-min/cuda_rasterizer/forward.cu +476 -0
  9. submodules/depth-diff-gaussian-rasterization-min/cuda_rasterizer/forward.h +68 -0
  10. submodules/depth-diff-gaussian-rasterization-min/cuda_rasterizer/rasterizer.h +90 -0
  11. submodules/depth-diff-gaussian-rasterization-min/cuda_rasterizer/rasterizer_impl.cu +444 -0
  12. submodules/depth-diff-gaussian-rasterization-min/cuda_rasterizer/rasterizer_impl.h +74 -0
  13. submodules/depth-diff-gaussian-rasterization-min/depth_diff_gaussian_rasterization_min.egg-info/PKG-INFO +4 -0
  14. submodules/depth-diff-gaussian-rasterization-min/depth_diff_gaussian_rasterization_min.egg-info/SOURCES.txt +13 -0
  15. submodules/depth-diff-gaussian-rasterization-min/depth_diff_gaussian_rasterization_min.egg-info/dependency_links.txt +1 -0
  16. submodules/depth-diff-gaussian-rasterization-min/depth_diff_gaussian_rasterization_min.egg-info/top_level.txt +1 -0
  17. submodules/depth-diff-gaussian-rasterization-min/depth_diff_gaussian_rasterization_min/.ipynb_checkpoints/__init__-checkpoint.py +222 -0
  18. submodules/depth-diff-gaussian-rasterization-min/depth_diff_gaussian_rasterization_min/__init__.py +222 -0
  19. submodules/depth-diff-gaussian-rasterization-min/ext.cpp +19 -0
  20. submodules/depth-diff-gaussian-rasterization-min/rasterize_points.cu +221 -0
  21. submodules/depth-diff-gaussian-rasterization-min/rasterize_points.h +68 -0
  22. submodules/depth-diff-gaussian-rasterization-min/setup.py +34 -0
  23. submodules/depth-diff-gaussian-rasterization-min/third_party/stbi_image_write.h +1724 -0
  24. submodules/simple-knn/ext.cpp +17 -0
  25. submodules/simple-knn/setup.py +35 -0
  26. submodules/simple-knn/simple_knn.cu +221 -0
  27. submodules/simple-knn/simple_knn.egg-info/PKG-INFO +3 -0
  28. submodules/simple-knn/simple_knn.egg-info/SOURCES.txt +8 -0
  29. submodules/simple-knn/simple_knn.egg-info/dependency_links.txt +1 -0
  30. submodules/simple-knn/simple_knn.egg-info/top_level.txt +1 -0
  31. submodules/simple-knn/simple_knn.h +21 -0
  32. submodules/simple-knn/simple_knn/.gitkeep +0 -0
  33. submodules/simple-knn/spatial.cu +26 -0
  34. submodules/simple-knn/spatial.h +14 -0
submodules/depth-diff-gaussian-rasterization-min/CMakeLists.txt ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright (C) 2023, Inria
3
+ # GRAPHDECO research group, https://team.inria.fr/graphdeco
4
+ # All rights reserved.
5
+ #
6
+ # This software is free for non-commercial, research and evaluation use
7
+ # under the terms of the LICENSE.md file.
8
+ #
9
+ # For inquiries contact george.drettakis@inria.fr
10
+ #
11
+
12
+ cmake_minimum_required(VERSION 3.20)
13
+
14
+ project(DiffRast LANGUAGES CUDA CXX)
15
+
16
+ set(CMAKE_CXX_STANDARD 17)
17
+ set(CMAKE_CXX_EXTENSIONS OFF)
18
+ set(CMAKE_CUDA_STANDARD 17)
19
+
20
+ set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS}")
21
+
22
+ add_library(CudaRasterizer
23
+ cuda_rasterizer/backward.h
24
+ cuda_rasterizer/backward.cu
25
+ cuda_rasterizer/forward.h
26
+ cuda_rasterizer/forward.cu
27
+ cuda_rasterizer/auxiliary.h
28
+ cuda_rasterizer/rasterizer_impl.cu
29
+ cuda_rasterizer/rasterizer_impl.h
30
+ cuda_rasterizer/rasterizer.h
31
+ )
32
+
33
+ set_target_properties(CudaRasterizer PROPERTIES CUDA_ARCHITECTURES "70;75;86")
34
+
35
+ target_include_directories(CudaRasterizer PUBLIC ${CMAKE_CURRENT_SOURCE_DIR}/cuda_rasterizer)
36
+ target_include_directories(CudaRasterizer PRIVATE third_party/glm ${CMAKE_CUDA_TOOLKIT_INCLUDE_DIRECTORIES})
submodules/depth-diff-gaussian-rasterization-min/LICENSE.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Gaussian-Splatting License
2
+ ===========================
3
+
4
+ **Inria** and **the Max Planck Institut for Informatik (MPII)** hold all the ownership rights on the *Software* named **gaussian-splatting**.
5
+ The *Software* is in the process of being registered with the Agence pour la Protection des
6
+ Programmes (APP).
7
+
8
+ The *Software* is still being developed by the *Licensor*.
9
+
10
+ *Licensor*'s goal is to allow the research community to use, test and evaluate
11
+ the *Software*.
12
+
13
+ ## 1. Definitions
14
+
15
+ *Licensee* means any person or entity that uses the *Software* and distributes
16
+ its *Work*.
17
+
18
+ *Licensor* means the owners of the *Software*, i.e Inria and MPII
19
+
20
+ *Software* means the original work of authorship made available under this
21
+ License ie gaussian-splatting.
22
+
23
+ *Work* means the *Software* and any additions to or derivative works of the
24
+ *Software* that are made available under this License.
25
+
26
+
27
+ ## 2. Purpose
28
+ This license is intended to define the rights granted to the *Licensee* by
29
+ Licensors under the *Software*.
30
+
31
+ ## 3. Rights granted
32
+
33
+ For the above reasons Licensors have decided to distribute the *Software*.
34
+ Licensors grant non-exclusive rights to use the *Software* for research purposes
35
+ to research users (both academic and industrial), free of charge, without right
36
+ to sublicense.. The *Software* may be used "non-commercially", i.e., for research
37
+ and/or evaluation purposes only.
38
+
39
+ Subject to the terms and conditions of this License, you are granted a
40
+ non-exclusive, royalty-free, license to reproduce, prepare derivative works of,
41
+ publicly display, publicly perform and distribute its *Work* and any resulting
42
+ derivative works in any form.
43
+
44
+ ## 4. Limitations
45
+
46
+ **4.1 Redistribution.** You may reproduce or distribute the *Work* only if (a) you do
47
+ so under this License, (b) you include a complete copy of this License with
48
+ your distribution, and (c) you retain without modification any copyright,
49
+ patent, trademark, or attribution notices that are present in the *Work*.
50
+
51
+ **4.2 Derivative Works.** You may specify that additional or different terms apply
52
+ to the use, reproduction, and distribution of your derivative works of the *Work*
53
+ ("Your Terms") only if (a) Your Terms provide that the use limitation in
54
+ Section 2 applies to your derivative works, and (b) you identify the specific
55
+ derivative works that are subject to Your Terms. Notwithstanding Your Terms,
56
+ this License (including the redistribution requirements in Section 3.1) will
57
+ continue to apply to the *Work* itself.
58
+
59
+ **4.3** Any other use without of prior consent of Licensors is prohibited. Research
60
+ users explicitly acknowledge having received from Licensors all information
61
+ allowing to appreciate the adequacy between of the *Software* and their needs and
62
+ to undertake all necessary precautions for its execution and use.
63
+
64
+ **4.4** The *Software* is provided both as a compiled library file and as source
65
+ code. In case of using the *Software* for a publication or other results obtained
66
+ through the use of the *Software*, users are strongly encouraged to cite the
67
+ corresponding publications as explained in the documentation of the *Software*.
68
+
69
+ ## 5. Disclaimer
70
+
71
+ THE USER CANNOT USE, EXPLOIT OR DISTRIBUTE THE *SOFTWARE* FOR COMMERCIAL PURPOSES
72
+ WITHOUT PRIOR AND EXPLICIT CONSENT OF LICENSORS. YOU MUST CONTACT INRIA FOR ANY
73
+ UNAUTHORIZED USE: stip-sophia.transfert@inria.fr . ANY SUCH ACTION WILL
74
+ CONSTITUTE A FORGERY. THIS *SOFTWARE* IS PROVIDED "AS IS" WITHOUT ANY WARRANTIES
75
+ OF ANY NATURE AND ANY EXPRESS OR IMPLIED WARRANTIES, WITH REGARDS TO COMMERCIAL
76
+ USE, PROFESSIONNAL USE, LEGAL OR NOT, OR OTHER, OR COMMERCIALISATION OR
77
+ ADAPTATION. UNLESS EXPLICITLY PROVIDED BY LAW, IN NO EVENT, SHALL INRIA OR THE
78
+ AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
79
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
80
+ GOODS OR SERVICES, LOSS OF USE, DATA, OR PROFITS OR BUSINESS INTERRUPTION)
81
+ HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
82
+ LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING FROM, OUT OF OR
83
+ IN CONNECTION WITH THE *SOFTWARE* OR THE USE OR OTHER DEALINGS IN THE *SOFTWARE*.
submodules/depth-diff-gaussian-rasterization-min/README.md ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Differential Gaussian Rasterization
2
+
3
+ Used as the rasterization engine for the paper "3D Gaussian Splatting for Real-Time Rendering of Radiance Fields". If you can make use of it in your own research, please be so kind to cite us.
4
+
5
+ <section class="section" id="BibTeX">
6
+ <div class="container is-max-desktop content">
7
+ <h2 class="title">BibTeX</h2>
8
+ <pre><code>@Article{kerbl3Dgaussians,
9
+ author = {Kerbl, Bernhard and Kopanas, Georgios and Leimk{\"u}hler, Thomas and Drettakis, George},
10
+ title = {3D Gaussian Splatting for Real-Time Radiance Field Rendering},
11
+ journal = {ACM Transactions on Graphics},
12
+ number = {4},
13
+ volume = {42},
14
+ month = {July},
15
+ year = {2023},
16
+ url = {https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/}
17
+ }</code></pre>
18
+ </div>
19
+ </section>
submodules/depth-diff-gaussian-rasterization-min/cuda_rasterizer/auxiliary.h ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ * Copyright (C) 2023, Inria
3
+ * GRAPHDECO research group, https://team.inria.fr/graphdeco
4
+ * All rights reserved.
5
+ *
6
+ * This software is free for non-commercial, research and evaluation use
7
+ * under the terms of the LICENSE.md file.
8
+ *
9
+ * For inquiries contact george.drettakis@inria.fr
10
+ */
11
+
12
+ #ifndef CUDA_RASTERIZER_AUXILIARY_H_INCLUDED
13
+ #define CUDA_RASTERIZER_AUXILIARY_H_INCLUDED
14
+
15
+ #include "config.h"
16
+ #include "stdio.h"
17
+
18
+ #define BLOCK_SIZE (BLOCK_X * BLOCK_Y)
19
+ #define NUM_WARPS (BLOCK_SIZE/32)
20
+
21
+ // Spherical harmonics coefficients
22
+ __device__ const float SH_C0 = 0.28209479177387814f;
23
+ __device__ const float SH_C1 = 0.4886025119029199f;
24
+ __device__ const float SH_C2[] = {
25
+ 1.0925484305920792f,
26
+ -1.0925484305920792f,
27
+ 0.31539156525252005f,
28
+ -1.0925484305920792f,
29
+ 0.5462742152960396f
30
+ };
31
+ __device__ const float SH_C3[] = {
32
+ -0.5900435899266435f,
33
+ 2.890611442640554f,
34
+ -0.4570457994644658f,
35
+ 0.3731763325901154f,
36
+ -0.4570457994644658f,
37
+ 1.445305721320277f,
38
+ -0.5900435899266435f
39
+ };
40
+
41
+ __forceinline__ __device__ float ndc2Pix(float v, int S)
42
+ {
43
+ return ((v + 1.0) * S - 1.0) * 0.5;
44
+ }
45
+
46
+ __forceinline__ __device__ void getRect(const float2 p, int max_radius, uint2& rect_min, uint2& rect_max, dim3 grid)
47
+ {
48
+ rect_min = {
49
+ min(grid.x, max((int)0, (int)((p.x - max_radius) / BLOCK_X))),
50
+ min(grid.y, max((int)0, (int)((p.y - max_radius) / BLOCK_Y)))
51
+ };
52
+ rect_max = {
53
+ min(grid.x, max((int)0, (int)((p.x + max_radius + BLOCK_X - 1) / BLOCK_X))),
54
+ min(grid.y, max((int)0, (int)((p.y + max_radius + BLOCK_Y - 1) / BLOCK_Y)))
55
+ };
56
+ }
57
+
58
+ __forceinline__ __device__ float3 transformPoint4x3(const float3& p, const float* matrix)
59
+ {
60
+ float3 transformed = {
61
+ matrix[0] * p.x + matrix[4] * p.y + matrix[8] * p.z + matrix[12],
62
+ matrix[1] * p.x + matrix[5] * p.y + matrix[9] * p.z + matrix[13],
63
+ matrix[2] * p.x + matrix[6] * p.y + matrix[10] * p.z + matrix[14],
64
+ };
65
+ return transformed;
66
+ }
67
+
68
+ __forceinline__ __device__ float4 transformPoint4x4(const float3& p, const float* matrix)
69
+ {
70
+ float4 transformed = {
71
+ matrix[0] * p.x + matrix[4] * p.y + matrix[8] * p.z + matrix[12],
72
+ matrix[1] * p.x + matrix[5] * p.y + matrix[9] * p.z + matrix[13],
73
+ matrix[2] * p.x + matrix[6] * p.y + matrix[10] * p.z + matrix[14],
74
+ matrix[3] * p.x + matrix[7] * p.y + matrix[11] * p.z + matrix[15]
75
+ };
76
+ return transformed;
77
+ }
78
+
79
+ __forceinline__ __device__ float3 transformVec4x3(const float3& p, const float* matrix)
80
+ {
81
+ float3 transformed = {
82
+ matrix[0] * p.x + matrix[4] * p.y + matrix[8] * p.z,
83
+ matrix[1] * p.x + matrix[5] * p.y + matrix[9] * p.z,
84
+ matrix[2] * p.x + matrix[6] * p.y + matrix[10] * p.z,
85
+ };
86
+ return transformed;
87
+ }
88
+
89
+ __forceinline__ __device__ float3 transformVec4x3Transpose(const float3& p, const float* matrix)
90
+ {
91
+ float3 transformed = {
92
+ matrix[0] * p.x + matrix[1] * p.y + matrix[2] * p.z,
93
+ matrix[4] * p.x + matrix[5] * p.y + matrix[6] * p.z,
94
+ matrix[8] * p.x + matrix[9] * p.y + matrix[10] * p.z,
95
+ };
96
+ return transformed;
97
+ }
98
+
99
+ __forceinline__ __device__ float dnormvdz(float3 v, float3 dv)
100
+ {
101
+ float sum2 = v.x * v.x + v.y * v.y + v.z * v.z;
102
+ float invsum32 = 1.0f / sqrt(sum2 * sum2 * sum2);
103
+ float dnormvdz = (-v.x * v.z * dv.x - v.y * v.z * dv.y + (sum2 - v.z * v.z) * dv.z) * invsum32;
104
+ return dnormvdz;
105
+ }
106
+
107
+ __forceinline__ __device__ float3 dnormvdv(float3 v, float3 dv)
108
+ {
109
+ float sum2 = v.x * v.x + v.y * v.y + v.z * v.z;
110
+ float invsum32 = 1.0f / sqrt(sum2 * sum2 * sum2);
111
+
112
+ float3 dnormvdv;
113
+ dnormvdv.x = ((+sum2 - v.x * v.x) * dv.x - v.y * v.x * dv.y - v.z * v.x * dv.z) * invsum32;
114
+ dnormvdv.y = (-v.x * v.y * dv.x + (sum2 - v.y * v.y) * dv.y - v.z * v.y * dv.z) * invsum32;
115
+ dnormvdv.z = (-v.x * v.z * dv.x - v.y * v.z * dv.y + (sum2 - v.z * v.z) * dv.z) * invsum32;
116
+ return dnormvdv;
117
+ }
118
+
119
+ __forceinline__ __device__ float4 dnormvdv(float4 v, float4 dv)
120
+ {
121
+ float sum2 = v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w;
122
+ float invsum32 = 1.0f / sqrt(sum2 * sum2 * sum2);
123
+
124
+ float4 vdv = { v.x * dv.x, v.y * dv.y, v.z * dv.z, v.w * dv.w };
125
+ float vdv_sum = vdv.x + vdv.y + vdv.z + vdv.w;
126
+ float4 dnormvdv;
127
+ dnormvdv.x = ((sum2 - v.x * v.x) * dv.x - v.x * (vdv_sum - vdv.x)) * invsum32;
128
+ dnormvdv.y = ((sum2 - v.y * v.y) * dv.y - v.y * (vdv_sum - vdv.y)) * invsum32;
129
+ dnormvdv.z = ((sum2 - v.z * v.z) * dv.z - v.z * (vdv_sum - vdv.z)) * invsum32;
130
+ dnormvdv.w = ((sum2 - v.w * v.w) * dv.w - v.w * (vdv_sum - vdv.w)) * invsum32;
131
+ return dnormvdv;
132
+ }
133
+
134
+ __forceinline__ __device__ float sigmoid(float x)
135
+ {
136
+ return 1.0f / (1.0f + expf(-x));
137
+ }
138
+
139
+ __forceinline__ __device__ bool in_frustum(int idx,
140
+ const float* orig_points,
141
+ const float* viewmatrix,
142
+ const float* projmatrix,
143
+ bool prefiltered,
144
+ float3& p_view)
145
+ {
146
+ float3 p_orig = { orig_points[3 * idx], orig_points[3 * idx + 1], orig_points[3 * idx + 2] };
147
+
148
+ // Bring points to screen space
149
+ float4 p_hom = transformPoint4x4(p_orig, projmatrix);
150
+ float p_w = 1.0f / (p_hom.w + 0.0000001f);
151
+ float3 p_proj = { p_hom.x * p_w, p_hom.y * p_w, p_hom.z * p_w };
152
+ p_view = transformPoint4x3(p_orig, viewmatrix);
153
+
154
+ if (p_view.z <= 0.2f)// || ((p_proj.x < -1.3 || p_proj.x > 1.3 || p_proj.y < -1.3 || p_proj.y > 1.3)))
155
+ {
156
+ if (prefiltered)
157
+ {
158
+ printf("Point is filtered although prefiltered is set. This shouldn't happen!");
159
+ __trap();
160
+ }
161
+ return false;
162
+ }
163
+ return true;
164
+ }
165
+
166
+ #define CHECK_CUDA(A, debug) \
167
+ A; if(debug) { \
168
+ auto ret = cudaDeviceSynchronize(); \
169
+ if (ret != cudaSuccess) { \
170
+ std::cerr << "\n[CUDA ERROR] in " << __FILE__ << "\nLine " << __LINE__ << ": " << cudaGetErrorString(ret); \
171
+ throw std::runtime_error(cudaGetErrorString(ret)); \
172
+ } \
173
+ }
174
+
175
+ #endif
submodules/depth-diff-gaussian-rasterization-min/cuda_rasterizer/backward.cu ADDED
@@ -0,0 +1,695 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ * Copyright (C) 2023, Inria
3
+ * GRAPHDECO research group, https://team.inria.fr/graphdeco
4
+ * All rights reserved.
5
+ *
6
+ * This software is free for non-commercial, research and evaluation use
7
+ * under the terms of the LICENSE.md file.
8
+ *
9
+ * For inquiries contact george.drettakis@inria.fr
10
+ */
11
+
12
+ #include "backward.h"
13
+ #include "auxiliary.h"
14
+ #include <cooperative_groups.h>
15
+ #include <cooperative_groups/reduce.h>
16
+ namespace cg = cooperative_groups;
17
+
18
+ // Backward pass for conversion of spherical harmonics to RGB for
19
+ // each Gaussian.
20
+ __device__ void computeColorFromSH(int idx, int deg, int max_coeffs, const glm::vec3* means, glm::vec3 campos, const float* shs, const bool* clamped, const glm::vec3* dL_dcolor, glm::vec3* dL_dmeans, glm::vec3* dL_dshs)
21
+ {
22
+ // Compute intermediate values, as it is done during forward
23
+ glm::vec3 pos = means[idx];
24
+ glm::vec3 dir_orig = pos - campos;
25
+ glm::vec3 dir = dir_orig / glm::length(dir_orig);
26
+
27
+ glm::vec3* sh = ((glm::vec3*)shs) + idx * max_coeffs;
28
+
29
+ // Use PyTorch rule for clamping: if clamping was applied,
30
+ // gradient becomes 0.
31
+ glm::vec3 dL_dRGB = dL_dcolor[idx];
32
+ dL_dRGB.x *= clamped[3 * idx + 0] ? 0 : 1;
33
+ dL_dRGB.y *= clamped[3 * idx + 1] ? 0 : 1;
34
+ dL_dRGB.z *= clamped[3 * idx + 2] ? 0 : 1;
35
+
36
+ glm::vec3 dRGBdx(0, 0, 0);
37
+ glm::vec3 dRGBdy(0, 0, 0);
38
+ glm::vec3 dRGBdz(0, 0, 0);
39
+ float x = dir.x;
40
+ float y = dir.y;
41
+ float z = dir.z;
42
+
43
+ // Target location for this Gaussian to write SH gradients to
44
+ glm::vec3* dL_dsh = dL_dshs + idx * max_coeffs;
45
+
46
+ // No tricks here, just high school-level calculus.
47
+ float dRGBdsh0 = SH_C0;
48
+ dL_dsh[0] = dRGBdsh0 * dL_dRGB;
49
+ if (deg > 0)
50
+ {
51
+ float dRGBdsh1 = -SH_C1 * y;
52
+ float dRGBdsh2 = SH_C1 * z;
53
+ float dRGBdsh3 = -SH_C1 * x;
54
+ dL_dsh[1] = dRGBdsh1 * dL_dRGB;
55
+ dL_dsh[2] = dRGBdsh2 * dL_dRGB;
56
+ dL_dsh[3] = dRGBdsh3 * dL_dRGB;
57
+
58
+ dRGBdx = -SH_C1 * sh[3];
59
+ dRGBdy = -SH_C1 * sh[1];
60
+ dRGBdz = SH_C1 * sh[2];
61
+
62
+ if (deg > 1)
63
+ {
64
+ float xx = x * x, yy = y * y, zz = z * z;
65
+ float xy = x * y, yz = y * z, xz = x * z;
66
+
67
+ float dRGBdsh4 = SH_C2[0] * xy;
68
+ float dRGBdsh5 = SH_C2[1] * yz;
69
+ float dRGBdsh6 = SH_C2[2] * (2.f * zz - xx - yy);
70
+ float dRGBdsh7 = SH_C2[3] * xz;
71
+ float dRGBdsh8 = SH_C2[4] * (xx - yy);
72
+ dL_dsh[4] = dRGBdsh4 * dL_dRGB;
73
+ dL_dsh[5] = dRGBdsh5 * dL_dRGB;
74
+ dL_dsh[6] = dRGBdsh6 * dL_dRGB;
75
+ dL_dsh[7] = dRGBdsh7 * dL_dRGB;
76
+ dL_dsh[8] = dRGBdsh8 * dL_dRGB;
77
+
78
+ dRGBdx += SH_C2[0] * y * sh[4] + SH_C2[2] * 2.f * -x * sh[6] + SH_C2[3] * z * sh[7] + SH_C2[4] * 2.f * x * sh[8];
79
+ dRGBdy += SH_C2[0] * x * sh[4] + SH_C2[1] * z * sh[5] + SH_C2[2] * 2.f * -y * sh[6] + SH_C2[4] * 2.f * -y * sh[8];
80
+ dRGBdz += SH_C2[1] * y * sh[5] + SH_C2[2] * 2.f * 2.f * z * sh[6] + SH_C2[3] * x * sh[7];
81
+
82
+ if (deg > 2)
83
+ {
84
+ float dRGBdsh9 = SH_C3[0] * y * (3.f * xx - yy);
85
+ float dRGBdsh10 = SH_C3[1] * xy * z;
86
+ float dRGBdsh11 = SH_C3[2] * y * (4.f * zz - xx - yy);
87
+ float dRGBdsh12 = SH_C3[3] * z * (2.f * zz - 3.f * xx - 3.f * yy);
88
+ float dRGBdsh13 = SH_C3[4] * x * (4.f * zz - xx - yy);
89
+ float dRGBdsh14 = SH_C3[5] * z * (xx - yy);
90
+ float dRGBdsh15 = SH_C3[6] * x * (xx - 3.f * yy);
91
+ dL_dsh[9] = dRGBdsh9 * dL_dRGB;
92
+ dL_dsh[10] = dRGBdsh10 * dL_dRGB;
93
+ dL_dsh[11] = dRGBdsh11 * dL_dRGB;
94
+ dL_dsh[12] = dRGBdsh12 * dL_dRGB;
95
+ dL_dsh[13] = dRGBdsh13 * dL_dRGB;
96
+ dL_dsh[14] = dRGBdsh14 * dL_dRGB;
97
+ dL_dsh[15] = dRGBdsh15 * dL_dRGB;
98
+
99
+ dRGBdx += (
100
+ SH_C3[0] * sh[9] * 3.f * 2.f * xy +
101
+ SH_C3[1] * sh[10] * yz +
102
+ SH_C3[2] * sh[11] * -2.f * xy +
103
+ SH_C3[3] * sh[12] * -3.f * 2.f * xz +
104
+ SH_C3[4] * sh[13] * (-3.f * xx + 4.f * zz - yy) +
105
+ SH_C3[5] * sh[14] * 2.f * xz +
106
+ SH_C3[6] * sh[15] * 3.f * (xx - yy));
107
+
108
+ dRGBdy += (
109
+ SH_C3[0] * sh[9] * 3.f * (xx - yy) +
110
+ SH_C3[1] * sh[10] * xz +
111
+ SH_C3[2] * sh[11] * (-3.f * yy + 4.f * zz - xx) +
112
+ SH_C3[3] * sh[12] * -3.f * 2.f * yz +
113
+ SH_C3[4] * sh[13] * -2.f * xy +
114
+ SH_C3[5] * sh[14] * -2.f * yz +
115
+ SH_C3[6] * sh[15] * -3.f * 2.f * xy);
116
+
117
+ dRGBdz += (
118
+ SH_C3[1] * sh[10] * xy +
119
+ SH_C3[2] * sh[11] * 4.f * 2.f * yz +
120
+ SH_C3[3] * sh[12] * 3.f * (2.f * zz - xx - yy) +
121
+ SH_C3[4] * sh[13] * 4.f * 2.f * xz +
122
+ SH_C3[5] * sh[14] * (xx - yy));
123
+ }
124
+ }
125
+ }
126
+
127
+ // The view direction is an input to the computation. View direction
128
+ // is influenced by the Gaussian's mean, so SHs gradients
129
+ // must propagate back into 3D position.
130
+ glm::vec3 dL_ddir(glm::dot(dRGBdx, dL_dRGB), glm::dot(dRGBdy, dL_dRGB), glm::dot(dRGBdz, dL_dRGB));
131
+
132
+ // Account for normalization of direction
133
+ float3 dL_dmean = dnormvdv(float3{ dir_orig.x, dir_orig.y, dir_orig.z }, float3{ dL_ddir.x, dL_ddir.y, dL_ddir.z });
134
+
135
+ // Gradients of loss w.r.t. Gaussian means, but only the portion
136
+ // that is caused because the mean affects the view-dependent color.
137
+ // Additional mean gradient is accumulated in below methods.
138
+ dL_dmeans[idx] += glm::vec3(dL_dmean.x, dL_dmean.y, dL_dmean.z);
139
+ }
140
+
141
+ // Backward version of INVERSE 2D covariance matrix computation
142
+ // (due to length launched as separate kernel before other
143
+ // backward steps contained in preprocess)
144
+ __global__ void computeCov2DCUDA(int P,
145
+ const float3* means,
146
+ const int* radii,
147
+ const float* cov3Ds,
148
+ const float h_x, float h_y,
149
+ const float tan_fovx, float tan_fovy,
150
+ const float* view_matrix,
151
+ const float* dL_dconics,
152
+ float3* dL_dmeans,
153
+ float* dL_dcov)
154
+ {
155
+ auto idx = cg::this_grid().thread_rank();
156
+ if (idx >= P || !(radii[idx] > 0))
157
+ return;
158
+
159
+ // Reading location of 3D covariance for this Gaussian
160
+ const float* cov3D = cov3Ds + 6 * idx;
161
+
162
+ // Fetch gradients, recompute 2D covariance and relevant
163
+ // intermediate forward results needed in the backward.
164
+ float3 mean = means[idx];
165
+ float3 dL_dconic = { dL_dconics[4 * idx], dL_dconics[4 * idx + 1], dL_dconics[4 * idx + 3] };
166
+ float3 t = transformPoint4x3(mean, view_matrix);
167
+
168
+ const float limx = 1.3f * tan_fovx;
169
+ const float limy = 1.3f * tan_fovy;
170
+ const float txtz = t.x / t.z;
171
+ const float tytz = t.y / t.z;
172
+ t.x = min(limx, max(-limx, txtz)) * t.z;
173
+ t.y = min(limy, max(-limy, tytz)) * t.z;
174
+
175
+ const float x_grad_mul = txtz < -limx || txtz > limx ? 0 : 1;
176
+ const float y_grad_mul = tytz < -limy || tytz > limy ? 0 : 1;
177
+
178
+ glm::mat3 J = glm::mat3(h_x / t.z, 0.0f, -(h_x * t.x) / (t.z * t.z),
179
+ 0.0f, h_y / t.z, -(h_y * t.y) / (t.z * t.z),
180
+ 0, 0, 0);
181
+
182
+ glm::mat3 W = glm::mat3(
183
+ view_matrix[0], view_matrix[4], view_matrix[8],
184
+ view_matrix[1], view_matrix[5], view_matrix[9],
185
+ view_matrix[2], view_matrix[6], view_matrix[10]);
186
+
187
+ glm::mat3 Vrk = glm::mat3(
188
+ cov3D[0], cov3D[1], cov3D[2],
189
+ cov3D[1], cov3D[3], cov3D[4],
190
+ cov3D[2], cov3D[4], cov3D[5]);
191
+
192
+ glm::mat3 T = W * J;
193
+
194
+ glm::mat3 cov2D = glm::transpose(T) * glm::transpose(Vrk) * T;
195
+
196
+ // Use helper variables for 2D covariance entries. More compact.
197
+ float a = cov2D[0][0] += 0.3f;
198
+ float b = cov2D[0][1];
199
+ float c = cov2D[1][1] += 0.3f;
200
+
201
+ float denom = a * c - b * b;
202
+ float dL_da = 0, dL_db = 0, dL_dc = 0;
203
+ float denom2inv = 1.0f / ((denom * denom) + 0.0000001f);
204
+
205
+ if (denom2inv != 0)
206
+ {
207
+ // Gradients of loss w.r.t. entries of 2D covariance matrix,
208
+ // given gradients of loss w.r.t. conic matrix (inverse covariance matrix).
209
+ // e.g., dL / da = dL / d_conic_a * d_conic_a / d_a
210
+ dL_da = denom2inv * (-c * c * dL_dconic.x + 2 * b * c * dL_dconic.y + (denom - a * c) * dL_dconic.z);
211
+ dL_dc = denom2inv * (-a * a * dL_dconic.z + 2 * a * b * dL_dconic.y + (denom - a * c) * dL_dconic.x);
212
+ dL_db = denom2inv * 2 * (b * c * dL_dconic.x - (denom + 2 * b * b) * dL_dconic.y + a * b * dL_dconic.z);
213
+
214
+ // Gradients of loss L w.r.t. each 3D covariance matrix (Vrk) entry,
215
+ // given gradients w.r.t. 2D covariance matrix (diagonal).
216
+ // cov2D = transpose(T) * transpose(Vrk) * T;
217
+ dL_dcov[6 * idx + 0] = (T[0][0] * T[0][0] * dL_da + T[0][0] * T[1][0] * dL_db + T[1][0] * T[1][0] * dL_dc);
218
+ dL_dcov[6 * idx + 3] = (T[0][1] * T[0][1] * dL_da + T[0][1] * T[1][1] * dL_db + T[1][1] * T[1][1] * dL_dc);
219
+ dL_dcov[6 * idx + 5] = (T[0][2] * T[0][2] * dL_da + T[0][2] * T[1][2] * dL_db + T[1][2] * T[1][2] * dL_dc);
220
+
221
+ // Gradients of loss L w.r.t. each 3D covariance matrix (Vrk) entry,
222
+ // given gradients w.r.t. 2D covariance matrix (off-diagonal).
223
+ // Off-diagonal elements appear twice --> double the gradient.
224
+ // cov2D = transpose(T) * transpose(Vrk) * T;
225
+ dL_dcov[6 * idx + 1] = 2 * T[0][0] * T[0][1] * dL_da + (T[0][0] * T[1][1] + T[0][1] * T[1][0]) * dL_db + 2 * T[1][0] * T[1][1] * dL_dc;
226
+ dL_dcov[6 * idx + 2] = 2 * T[0][0] * T[0][2] * dL_da + (T[0][0] * T[1][2] + T[0][2] * T[1][0]) * dL_db + 2 * T[1][0] * T[1][2] * dL_dc;
227
+ dL_dcov[6 * idx + 4] = 2 * T[0][2] * T[0][1] * dL_da + (T[0][1] * T[1][2] + T[0][2] * T[1][1]) * dL_db + 2 * T[1][1] * T[1][2] * dL_dc;
228
+ }
229
+ else
230
+ {
231
+ for (int i = 0; i < 6; i++)
232
+ dL_dcov[6 * idx + i] = 0;
233
+ }
234
+
235
+ // Gradients of loss w.r.t. upper 2x3 portion of intermediate matrix T
236
+ // cov2D = transpose(T) * transpose(Vrk) * T;
237
+ float dL_dT00 = 2 * (T[0][0] * Vrk[0][0] + T[0][1] * Vrk[0][1] + T[0][2] * Vrk[0][2]) * dL_da +
238
+ (T[1][0] * Vrk[0][0] + T[1][1] * Vrk[0][1] + T[1][2] * Vrk[0][2]) * dL_db;
239
+ float dL_dT01 = 2 * (T[0][0] * Vrk[1][0] + T[0][1] * Vrk[1][1] + T[0][2] * Vrk[1][2]) * dL_da +
240
+ (T[1][0] * Vrk[1][0] + T[1][1] * Vrk[1][1] + T[1][2] * Vrk[1][2]) * dL_db;
241
+ float dL_dT02 = 2 * (T[0][0] * Vrk[2][0] + T[0][1] * Vrk[2][1] + T[0][2] * Vrk[2][2]) * dL_da +
242
+ (T[1][0] * Vrk[2][0] + T[1][1] * Vrk[2][1] + T[1][2] * Vrk[2][2]) * dL_db;
243
+ float dL_dT10 = 2 * (T[1][0] * Vrk[0][0] + T[1][1] * Vrk[0][1] + T[1][2] * Vrk[0][2]) * dL_dc +
244
+ (T[0][0] * Vrk[0][0] + T[0][1] * Vrk[0][1] + T[0][2] * Vrk[0][2]) * dL_db;
245
+ float dL_dT11 = 2 * (T[1][0] * Vrk[1][0] + T[1][1] * Vrk[1][1] + T[1][2] * Vrk[1][2]) * dL_dc +
246
+ (T[0][0] * Vrk[1][0] + T[0][1] * Vrk[1][1] + T[0][2] * Vrk[1][2]) * dL_db;
247
+ float dL_dT12 = 2 * (T[1][0] * Vrk[2][0] + T[1][1] * Vrk[2][1] + T[1][2] * Vrk[2][2]) * dL_dc +
248
+ (T[0][0] * Vrk[2][0] + T[0][1] * Vrk[2][1] + T[0][2] * Vrk[2][2]) * dL_db;
249
+
250
+ // Gradients of loss w.r.t. upper 3x2 non-zero entries of Jacobian matrix
251
+ // T = W * J
252
+ float dL_dJ00 = W[0][0] * dL_dT00 + W[0][1] * dL_dT01 + W[0][2] * dL_dT02;
253
+ float dL_dJ02 = W[2][0] * dL_dT00 + W[2][1] * dL_dT01 + W[2][2] * dL_dT02;
254
+ float dL_dJ11 = W[1][0] * dL_dT10 + W[1][1] * dL_dT11 + W[1][2] * dL_dT12;
255
+ float dL_dJ12 = W[2][0] * dL_dT10 + W[2][1] * dL_dT11 + W[2][2] * dL_dT12;
256
+
257
+ float tz = 1.f / t.z;
258
+ float tz2 = tz * tz;
259
+ float tz3 = tz2 * tz;
260
+
261
+ // Gradients of loss w.r.t. transformed Gaussian mean t
262
+ float dL_dtx = x_grad_mul * -h_x * tz2 * dL_dJ02;
263
+ float dL_dty = y_grad_mul * -h_y * tz2 * dL_dJ12;
264
+ float dL_dtz = -h_x * tz2 * dL_dJ00 - h_y * tz2 * dL_dJ11 + (2 * h_x * t.x) * tz3 * dL_dJ02 + (2 * h_y * t.y) * tz3 * dL_dJ12;
265
+
266
+ // Account for transformation of mean to t
267
+ // t = transformPoint4x3(mean, view_matrix);
268
+ float3 dL_dmean = transformVec4x3Transpose({ dL_dtx, dL_dty, dL_dtz }, view_matrix);
269
+
270
+ // Gradients of loss w.r.t. Gaussian means, but only the portion
271
+ // that is caused because the mean affects the covariance matrix.
272
+ // Additional mean gradient is accumulated in BACKWARD::preprocess.
273
+ dL_dmeans[idx] = dL_dmean;
274
+ }
275
+
276
+ // Backward pass for the conversion of scale and rotation to a
277
+ // 3D covariance matrix for each Gaussian.
278
+ __device__ void computeCov3D(int idx, const glm::vec3 scale, float mod, const glm::vec4 rot, const float* dL_dcov3Ds, glm::vec3* dL_dscales, glm::vec4* dL_drots)
279
+ {
280
+ // Recompute (intermediate) results for the 3D covariance computation.
281
+ glm::vec4 q = rot;// / glm::length(rot);
282
+ float r = q.x;
283
+ float x = q.y;
284
+ float y = q.z;
285
+ float z = q.w;
286
+
287
+ glm::mat3 R = glm::mat3(
288
+ 1.f - 2.f * (y * y + z * z), 2.f * (x * y - r * z), 2.f * (x * z + r * y),
289
+ 2.f * (x * y + r * z), 1.f - 2.f * (x * x + z * z), 2.f * (y * z - r * x),
290
+ 2.f * (x * z - r * y), 2.f * (y * z + r * x), 1.f - 2.f * (x * x + y * y)
291
+ );
292
+
293
+ glm::mat3 S = glm::mat3(1.0f);
294
+
295
+ glm::vec3 s = mod * scale;
296
+ S[0][0] = s.x;
297
+ S[1][1] = s.y;
298
+ S[2][2] = s.z;
299
+
300
+ glm::mat3 M = S * R;
301
+
302
+ const float* dL_dcov3D = dL_dcov3Ds + 6 * idx;
303
+
304
+ glm::vec3 dunc(dL_dcov3D[0], dL_dcov3D[3], dL_dcov3D[5]);
305
+ glm::vec3 ounc = 0.5f * glm::vec3(dL_dcov3D[1], dL_dcov3D[2], dL_dcov3D[4]);
306
+
307
+ // Convert per-element covariance loss gradients to matrix form
308
+ glm::mat3 dL_dSigma = glm::mat3(
309
+ dL_dcov3D[0], 0.5f * dL_dcov3D[1], 0.5f * dL_dcov3D[2],
310
+ 0.5f * dL_dcov3D[1], dL_dcov3D[3], 0.5f * dL_dcov3D[4],
311
+ 0.5f * dL_dcov3D[2], 0.5f * dL_dcov3D[4], dL_dcov3D[5]
312
+ );
313
+
314
+ // Compute loss gradient w.r.t. matrix M
315
+ // dSigma_dM = 2 * M
316
+ glm::mat3 dL_dM = 2.0f * M * dL_dSigma;
317
+
318
+ glm::mat3 Rt = glm::transpose(R);
319
+ glm::mat3 dL_dMt = glm::transpose(dL_dM);
320
+
321
+ // Gradients of loss w.r.t. scale
322
+ glm::vec3* dL_dscale = dL_dscales + idx;
323
+ dL_dscale->x = glm::dot(Rt[0], dL_dMt[0]);
324
+ dL_dscale->y = glm::dot(Rt[1], dL_dMt[1]);
325
+ dL_dscale->z = glm::dot(Rt[2], dL_dMt[2]);
326
+
327
+ dL_dMt[0] *= s.x;
328
+ dL_dMt[1] *= s.y;
329
+ dL_dMt[2] *= s.z;
330
+
331
+ // Gradients of loss w.r.t. normalized quaternion
332
+ glm::vec4 dL_dq;
333
+ dL_dq.x = 2 * z * (dL_dMt[0][1] - dL_dMt[1][0]) + 2 * y * (dL_dMt[2][0] - dL_dMt[0][2]) + 2 * x * (dL_dMt[1][2] - dL_dMt[2][1]);
334
+ dL_dq.y = 2 * y * (dL_dMt[1][0] + dL_dMt[0][1]) + 2 * z * (dL_dMt[2][0] + dL_dMt[0][2]) + 2 * r * (dL_dMt[1][2] - dL_dMt[2][1]) - 4 * x * (dL_dMt[2][2] + dL_dMt[1][1]);
335
+ dL_dq.z = 2 * x * (dL_dMt[1][0] + dL_dMt[0][1]) + 2 * r * (dL_dMt[2][0] - dL_dMt[0][2]) + 2 * z * (dL_dMt[1][2] + dL_dMt[2][1]) - 4 * y * (dL_dMt[2][2] + dL_dMt[0][0]);
336
+ dL_dq.w = 2 * r * (dL_dMt[0][1] - dL_dMt[1][0]) + 2 * x * (dL_dMt[2][0] + dL_dMt[0][2]) + 2 * y * (dL_dMt[1][2] + dL_dMt[2][1]) - 4 * z * (dL_dMt[1][1] + dL_dMt[0][0]);
337
+
338
+ // Gradients of loss w.r.t. unnormalized quaternion
339
+ float4* dL_drot = (float4*)(dL_drots + idx);
340
+ *dL_drot = float4{ dL_dq.x, dL_dq.y, dL_dq.z, dL_dq.w };//dnormvdv(float4{ rot.x, rot.y, rot.z, rot.w }, float4{ dL_dq.x, dL_dq.y, dL_dq.z, dL_dq.w });
341
+ }
342
+
343
+ // Backward pass of the preprocessing steps, except
344
+ // for the covariance computation and inversion
345
+ // (those are handled by a previous kernel call)
346
+ template<int C>
347
+ __global__ void preprocessCUDA(
348
+ int P, int D, int M,
349
+ const float3* means,
350
+ const int* radii,
351
+ const float* shs,
352
+ const bool* clamped,
353
+ const glm::vec3* scales,
354
+ const glm::vec4* rotations,
355
+ const float scale_modifier,
356
+ const float* proj,
357
+ const glm::vec3* campos,
358
+ const float3* dL_dmean2D,
359
+ glm::vec3* dL_dmeans,
360
+ float* dL_dcolor,
361
+ float* dL_dcov3D,
362
+ float* dL_dsh,
363
+ glm::vec3* dL_dscale,
364
+ glm::vec4* dL_drot)
365
+ {
366
+ auto idx = cg::this_grid().thread_rank();
367
+ if (idx >= P || !(radii[idx] > 0))
368
+ return;
369
+
370
+ float3 m = means[idx];
371
+
372
+ // Taking care of gradients from the screenspace points
373
+ float4 m_hom = transformPoint4x4(m, proj);
374
+ float m_w = 1.0f / (m_hom.w + 0.0000001f);
375
+
376
+ // Compute loss gradient w.r.t. 3D means due to gradients of 2D means
377
+ // from rendering procedure
378
+ glm::vec3 dL_dmean;
379
+ float mul1 = (proj[0] * m.x + proj[4] * m.y + proj[8] * m.z + proj[12]) * m_w * m_w;
380
+ float mul2 = (proj[1] * m.x + proj[5] * m.y + proj[9] * m.z + proj[13]) * m_w * m_w;
381
+ dL_dmean.x = (proj[0] * m_w - proj[3] * mul1) * dL_dmean2D[idx].x + (proj[1] * m_w - proj[3] * mul2) * dL_dmean2D[idx].y;
382
+ dL_dmean.y = (proj[4] * m_w - proj[7] * mul1) * dL_dmean2D[idx].x + (proj[5] * m_w - proj[7] * mul2) * dL_dmean2D[idx].y;
383
+ dL_dmean.z = (proj[8] * m_w - proj[11] * mul1) * dL_dmean2D[idx].x + (proj[9] * m_w - proj[11] * mul2) * dL_dmean2D[idx].y;
384
+
385
+ // That's the second part of the mean gradient. Previous computation
386
+ // of cov2D and following SH conversion also affects it.
387
+ dL_dmeans[idx] += dL_dmean;
388
+
389
+ // Compute gradient updates due to computing colors from SHs
390
+ if (shs)
391
+ computeColorFromSH(idx, D, M, (glm::vec3*)means, *campos, shs, clamped, (glm::vec3*)dL_dcolor, (glm::vec3*)dL_dmeans, (glm::vec3*)dL_dsh);
392
+
393
+ // Compute gradient updates due to computing covariance from scale/rotation
394
+ if (scales)
395
+ computeCov3D(idx, scales[idx], scale_modifier, rotations[idx], dL_dcov3D, dL_dscale, dL_drot);
396
+ }
397
+
398
+ // Backward version of the rendering procedure.
399
+ template <uint32_t C>
400
+ __global__ void __launch_bounds__(BLOCK_X * BLOCK_Y)
401
+ renderCUDA(
402
+ const uint2* __restrict__ ranges,
403
+ const uint32_t* __restrict__ point_list,
404
+ int W, int H,
405
+ const float* __restrict__ bg_color,
406
+ const float2* __restrict__ points_xy_image,
407
+ const float4* __restrict__ conic_opacity,
408
+ const float3* __restrict__ points_xyz,
409
+ const float* __restrict__ colors,
410
+ const float* __restrict__ depths,
411
+ const float* __restrict__ projmatrix,
412
+ const float* __restrict__ final_Ts,
413
+ const uint32_t* __restrict__ n_contrib,
414
+ const float* __restrict__ dL_dpixels,
415
+ const float* __restrict__ dL_depths,
416
+ float3* __restrict__ dL_dmean2D,
417
+ float4* __restrict__ dL_dconic2D,
418
+ float3* __restrict__ dL_dmean3D,
419
+ float* __restrict__ dL_dopacity,
420
+ float* __restrict__ dL_dcolors)
421
+ {
422
+ // We rasterize again. Compute necessary block info.
423
+ auto block = cg::this_thread_block();
424
+ const uint32_t horizontal_blocks = (W + BLOCK_X - 1) / BLOCK_X;
425
+ const uint2 pix_min = { block.group_index().x * BLOCK_X, block.group_index().y * BLOCK_Y };
426
+ const uint2 pix_max = { min(pix_min.x + BLOCK_X, W), min(pix_min.y + BLOCK_Y , H) };
427
+ const uint2 pix = { pix_min.x + block.thread_index().x, pix_min.y + block.thread_index().y };
428
+ const uint32_t pix_id = W * pix.y + pix.x;
429
+ const float2 pixf = { (float)pix.x, (float)pix.y };
430
+
431
+ const bool inside = pix.x < W&& pix.y < H;
432
+ const uint2 range = ranges[block.group_index().y * horizontal_blocks + block.group_index().x];
433
+
434
+ const int rounds = ((range.y - range.x + BLOCK_SIZE - 1) / BLOCK_SIZE);
435
+
436
+ bool done = !inside;
437
+ int toDo = range.y - range.x;
438
+
439
+ __shared__ int collected_id[BLOCK_SIZE];
440
+ __shared__ float2 collected_xy[BLOCK_SIZE];
441
+ __shared__ float4 collected_conic_opacity[BLOCK_SIZE];
442
+ __shared__ float collected_colors[C * BLOCK_SIZE];
443
+ __shared__ float collected_depths[BLOCK_SIZE];
444
+
445
+ // In the forward, we stored the final value for T, the
446
+ // product of all (1 - alpha) factors.
447
+ const float T_final = inside ? final_Ts[pix_id] : 0;
448
+ float T = T_final;
449
+
450
+ // We start from the back. The ID of the last contributing
451
+ // Gaussian is known from each pixel from the forward.
452
+ uint32_t contributor = toDo;
453
+ const int last_contributor = inside ? n_contrib[pix_id] : 0;
454
+
455
+ float accum_rec[C] = { 0 };
456
+ float dL_dpixel[C];
457
+ float dL_depth;
458
+ float accum_depth_rec = 0;
459
+ if (inside)
460
+ {
461
+ for (int i = 0; i < C; i++)
462
+ dL_dpixel[i] = dL_dpixels[i * H * W + pix_id];
463
+ dL_depth = dL_depths[pix_id];
464
+ }
465
+
466
+ float last_alpha = 0;
467
+ float last_color[C] = { 0 };
468
+ float last_depth = 0;
469
+
470
+ // Gradient of pixel coordinate w.r.t. normalized
471
+ // screen-space viewport corrdinates (-1 to 1)
472
+ const float ddelx_dx = 0.5 * W;
473
+ const float ddely_dy = 0.5 * H;
474
+
475
+ // Traverse all Gaussians
476
+ for (int i = 0; i < rounds; i++, toDo -= BLOCK_SIZE)
477
+ {
478
+ // Load auxiliary data into shared memory, start in the BACK
479
+ // and load them in revers order.
480
+ block.sync();
481
+ const int progress = i * BLOCK_SIZE + block.thread_rank();
482
+ if (range.x + progress < range.y)
483
+ {
484
+ const int coll_id = point_list[range.y - progress - 1];
485
+ collected_id[block.thread_rank()] = coll_id;
486
+ collected_xy[block.thread_rank()] = points_xy_image[coll_id];
487
+ collected_conic_opacity[block.thread_rank()] = conic_opacity[coll_id];
488
+ for (int i = 0; i < C; i++)
489
+ collected_colors[i * BLOCK_SIZE + block.thread_rank()] = colors[coll_id * C + i];
490
+ collected_depths[block.thread_rank()] = depths[coll_id];
491
+ }
492
+ block.sync();
493
+
494
+ // Iterate over Gaussians
495
+ for (int j = 0; !done && j < min(BLOCK_SIZE, toDo); j++)
496
+ {
497
+ // Keep track of current Gaussian ID. Skip, if this one
498
+ // is behind the last contributor for this pixel.
499
+ contributor--;
500
+ if (contributor >= last_contributor)
501
+ continue;
502
+
503
+ // Compute blending values, as before.
504
+ const float2 xy = collected_xy[j];
505
+ const float2 d = { xy.x - pixf.x, xy.y - pixf.y };
506
+ const float4 con_o = collected_conic_opacity[j];
507
+ const float power = -0.5f * (con_o.x * d.x * d.x + con_o.z * d.y * d.y) - con_o.y * d.x * d.y;
508
+ if (power > 0.0f)
509
+ continue;
510
+
511
+ const float G = exp(power);
512
+ const float alpha = min(0.99f, con_o.w * G);
513
+ if (alpha < 1.0f / 255.0f)
514
+ continue;
515
+
516
+ T = T / (1.f - alpha);
517
+ const float dchannel_dcolor = alpha * T;
518
+
519
+ // Propagate gradients to per-Gaussian colors and keep
520
+ // gradients w.r.t. alpha (blending factor for a Gaussian/pixel
521
+ // pair).
522
+ float dL_dalpha = 0.0f;
523
+ const int global_id = collected_id[j];
524
+ for (int ch = 0; ch < C; ch++)
525
+ {
526
+ const float c = collected_colors[ch * BLOCK_SIZE + j];
527
+ // Update last color (to be used in the next iteration)
528
+ accum_rec[ch] = last_alpha * last_color[ch] + (1.f - last_alpha) * accum_rec[ch];
529
+ last_color[ch] = c;
530
+
531
+ const float dL_dchannel = dL_dpixel[ch];
532
+ dL_dalpha += (c - accum_rec[ch]) * dL_dchannel;
533
+ // Update the gradients w.r.t. color of the Gaussian.
534
+ // Atomic, since this pixel is just one of potentially
535
+ // many that were affected by this Gaussian.
536
+ atomicAdd(&(dL_dcolors[global_id * C + ch]), dchannel_dcolor * dL_dchannel);
537
+ }
538
+ const float c_d = collected_depths[j];
539
+ accum_depth_rec = last_alpha * last_depth + (1.f - last_alpha) * accum_depth_rec;
540
+ last_depth = c_d;
541
+ dL_dalpha += (c_d - accum_depth_rec) * dL_depth;
542
+ dL_dalpha *= T;
543
+
544
+ // Update the gradients w.r.t. depth (=z in camera coord.) of the Gaussian.
545
+ float3 m = points_xyz[global_id];
546
+ float4 m_hom = transformPoint4x4(m, projmatrix);
547
+ float m_w = 1.0f / (m_hom.w + 0.0000001f);
548
+ float mul3 = (projmatrix[2] * m.x + projmatrix[6] * m.y + projmatrix[10] * m.z + projmatrix[14]) * m_w * m_w;
549
+ // Update gradients w.r.t. 2D mean position of the Gaussian
550
+ const float dL_camz = dchannel_dcolor * dL_depth;
551
+ atomicAdd(&dL_dmean3D[global_id].x, (projmatrix[2] * m_w - projmatrix[3] * mul3) * dL_camz);
552
+ atomicAdd(&dL_dmean3D[global_id].y, (projmatrix[6] * m_w - projmatrix[7] * mul3) * dL_camz);
553
+ atomicAdd(&dL_dmean3D[global_id].z, (projmatrix[10] * m_w - projmatrix[11] * mul3) * dL_camz);
554
+ // Update last alpha (to be used in the next iteration)
555
+ last_alpha = alpha;
556
+
557
+ // Account for fact that alpha also influences how much of
558
+ // the background color is added if nothing left to blend
559
+ float bg_dot_dpixel = 0;
560
+ for (int i = 0; i < C; i++)
561
+ bg_dot_dpixel += bg_color[i] * dL_dpixel[i];
562
+ dL_dalpha += (-T_final / (1.f - alpha)) * bg_dot_dpixel;
563
+
564
+
565
+ // Helpful reusable temporary variables
566
+ const float dL_dG = con_o.w * dL_dalpha;
567
+ const float gdx = G * d.x;
568
+ const float gdy = G * d.y;
569
+ const float dG_ddelx = -gdx * con_o.x - gdy * con_o.y;
570
+ const float dG_ddely = -gdy * con_o.z - gdx * con_o.y;
571
+
572
+ // Update gradients w.r.t. 2D mean position of the Gaussian
573
+ atomicAdd(&dL_dmean2D[global_id].x, dL_dG * dG_ddelx * ddelx_dx);
574
+ atomicAdd(&dL_dmean2D[global_id].y, dL_dG * dG_ddely * ddely_dy);
575
+
576
+ // Update gradients w.r.t. 2D covariance (2x2 matrix, symmetric)
577
+ atomicAdd(&dL_dconic2D[global_id].x, -0.5f * gdx * d.x * dL_dG);
578
+ atomicAdd(&dL_dconic2D[global_id].y, -0.5f * gdx * d.y * dL_dG);
579
+ atomicAdd(&dL_dconic2D[global_id].w, -0.5f * gdy * d.y * dL_dG);
580
+
581
+ // Update gradients w.r.t. opacity of the Gaussian
582
+ atomicAdd(&(dL_dopacity[global_id]), G * dL_dalpha);
583
+ }
584
+ }
585
+ }
586
+
587
+ void BACKWARD::preprocess(
588
+ int P, int D, int M,
589
+ const float3* means3D,
590
+ const int* radii,
591
+ const float* shs,
592
+ const bool* clamped,
593
+ const glm::vec3* scales,
594
+ const glm::vec4* rotations,
595
+ const float scale_modifier,
596
+ const float* cov3Ds,
597
+ const float* viewmatrix,
598
+ const float* projmatrix,
599
+ const float focal_x, float focal_y,
600
+ const float tan_fovx, float tan_fovy,
601
+ const glm::vec3* campos,
602
+ const float3* dL_dmean2D,
603
+ const float* dL_dconic,
604
+ glm::vec3* dL_dmean3D,
605
+ float* dL_dcolor,
606
+ float* dL_dcov3D,
607
+ float* dL_dsh,
608
+ glm::vec3* dL_dscale,
609
+ glm::vec4* dL_drot)
610
+ {
611
+ // Propagate gradients for the path of 2D conic matrix computation.
612
+ // Somewhat long, thus it is its own kernel rather than being part of
613
+ // "preprocess". When done, loss gradient w.r.t. 3D means has been
614
+ // modified and gradient w.r.t. 3D covariance matrix has been computed.
615
+ computeCov2DCUDA << <(P + 255) / 256, 256 >> > (
616
+ P,
617
+ means3D,
618
+ radii,
619
+ cov3Ds,
620
+ focal_x,
621
+ focal_y,
622
+ tan_fovx,
623
+ tan_fovy,
624
+ viewmatrix,
625
+ dL_dconic,
626
+ (float3*)dL_dmean3D,
627
+ dL_dcov3D);
628
+
629
+ // Propagate gradients for remaining steps: finish 3D mean gradients,
630
+ // propagate color gradients to SH (if desireD), propagate 3D covariance
631
+ // matrix gradients to scale and rotation.
632
+ preprocessCUDA<NUM_CHANNELS> << < (P + 255) / 256, 256 >> > (
633
+ P, D, M,
634
+ (float3*)means3D,
635
+ radii,
636
+ shs,
637
+ clamped,
638
+ (glm::vec3*)scales,
639
+ (glm::vec4*)rotations,
640
+ scale_modifier,
641
+ projmatrix,
642
+ campos,
643
+ (float3*)dL_dmean2D,
644
+ (glm::vec3*)dL_dmean3D,
645
+ dL_dcolor,
646
+ dL_dcov3D,
647
+ dL_dsh,
648
+ dL_dscale,
649
+ dL_drot);
650
+ }
651
+
652
+ void BACKWARD::render(
653
+ const dim3 grid, const dim3 block,
654
+ const uint2* ranges,
655
+ const uint32_t* point_list,
656
+ int W, int H,
657
+ const float* bg_color,
658
+ const float2* means2D,
659
+ const float4* conic_opacity,
660
+ const float3* means3D,
661
+ const float* colors,
662
+ const float* depths,
663
+ const float* projmatrix,
664
+ const float* final_Ts,
665
+ const uint32_t* n_contrib,
666
+ const float* dL_dpixels,
667
+ const float* dL_depths,
668
+ float3* dL_dmean2D,
669
+ float4* dL_dconic2D,
670
+ float3* dL_dmean3D,
671
+ float* dL_dopacity,
672
+ float* dL_dcolors)
673
+ {
674
+ renderCUDA<NUM_CHANNELS> << <grid, block >> >(
675
+ ranges,
676
+ point_list,
677
+ W, H,
678
+ bg_color,
679
+ means2D,
680
+ conic_opacity,
681
+ means3D,
682
+ colors,
683
+ depths,
684
+ projmatrix,
685
+ final_Ts,
686
+ n_contrib,
687
+ dL_dpixels,
688
+ dL_depths,
689
+ dL_dmean2D,
690
+ dL_dconic2D,
691
+ dL_dmean3D,
692
+ dL_dopacity,
693
+ dL_dcolors
694
+ );
695
+ }
submodules/depth-diff-gaussian-rasterization-min/cuda_rasterizer/backward.h ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ * Copyright (C) 2023, Inria
3
+ * GRAPHDECO research group, https://team.inria.fr/graphdeco
4
+ * All rights reserved.
5
+ *
6
+ * This software is free for non-commercial, research and evaluation use
7
+ * under the terms of the LICENSE.md file.
8
+ *
9
+ * For inquiries contact george.drettakis@inria.fr
10
+ */
11
+
12
+ #ifndef CUDA_RASTERIZER_BACKWARD_H_INCLUDED
13
+ #define CUDA_RASTERIZER_BACKWARD_H_INCLUDED
14
+
15
+ #include <cuda.h>
16
+ #include "cuda_runtime.h"
17
+ #include "device_launch_parameters.h"
18
+ #define GLM_FORCE_CUDA
19
+ #include <glm/glm.hpp>
20
+
21
+ namespace BACKWARD
22
+ {
23
+ void render(
24
+ const dim3 grid, dim3 block,
25
+ const uint2* ranges,
26
+ const uint32_t* point_list,
27
+ int W, int H,
28
+ const float* bg_color,
29
+ const float2* means2D,
30
+ const float4* conic_opacity,
31
+ const float3* means3D,
32
+ const float* colors,
33
+ const float* depths,
34
+ const float* projmatrix,
35
+ const float* final_Ts,
36
+ const uint32_t* n_contrib,
37
+ const float* dL_dpixels,
38
+ const float* dL_depths,
39
+ float3* dL_dmean2D,
40
+ float4* dL_dconic2D,
41
+ float3* dL_dmean3D,
42
+ float* dL_dopacity,
43
+ float* dL_dcolors);
44
+
45
+ void preprocess(
46
+ int P, int D, int M,
47
+ const float3* means,
48
+ const int* radii,
49
+ const float* shs,
50
+ const bool* clamped,
51
+ const glm::vec3* scales,
52
+ const glm::vec4* rotations,
53
+ const float scale_modifier,
54
+ const float* cov3Ds,
55
+ const float* view,
56
+ const float* proj,
57
+ const float focal_x, float focal_y,
58
+ const float tan_fovx, float tan_fovy,
59
+ const glm::vec3* campos,
60
+ const float3* dL_dmean2D,
61
+ const float* dL_dconics,
62
+ glm::vec3* dL_dmeans,
63
+ float* dL_dcolor,
64
+ float* dL_dcov3D,
65
+ float* dL_dsh,
66
+ glm::vec3* dL_dscale,
67
+ glm::vec4* dL_drot);
68
+ }
69
+
70
+ #endif
submodules/depth-diff-gaussian-rasterization-min/cuda_rasterizer/config.h ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ * Copyright (C) 2023, Inria
3
+ * GRAPHDECO research group, https://team.inria.fr/graphdeco
4
+ * All rights reserved.
5
+ *
6
+ * This software is free for non-commercial, research and evaluation use
7
+ * under the terms of the LICENSE.md file.
8
+ *
9
+ * For inquiries contact george.drettakis@inria.fr
10
+ */
11
+
12
+ #ifndef CUDA_RASTERIZER_CONFIG_H_INCLUDED
13
+ #define CUDA_RASTERIZER_CONFIG_H_INCLUDED
14
+
15
+ #define NUM_CHANNELS 3 // Default 3, RGB
16
+ #define BLOCK_X 16
17
+ #define BLOCK_Y 16
18
+
19
+ #endif
submodules/depth-diff-gaussian-rasterization-min/cuda_rasterizer/forward.cu ADDED
@@ -0,0 +1,476 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ * Copyright (C) 2023, Inria
3
+ * GRAPHDECO research group, https://team.inria.fr/graphdeco
4
+ * All rights reserved.
5
+ *
6
+ * This software is free for non-commercial, research and evaluation use
7
+ * under the terms of the LICENSE.md file.
8
+ *
9
+ * For inquiries contact george.drettakis@inria.fr
10
+ */
11
+
12
+ #include "forward.h"
13
+ #include "auxiliary.h"
14
+ #include <cooperative_groups.h>
15
+ #include <cooperative_groups/reduce.h>
16
+ namespace cg = cooperative_groups;
17
+
18
+ // Forward method for converting the input spherical harmonics
19
+ // coefficients of each Gaussian to a simple RGB color.
20
+ __device__ glm::vec3 computeColorFromSH(int idx, int deg, int max_coeffs, const glm::vec3* means, glm::vec3 campos, const float* shs, bool* clamped)
21
+ {
22
+ // The implementation is loosely based on code for
23
+ // "Differentiable Point-Based Radiance Fields for
24
+ // Efficient View Synthesis" by Zhang et al. (2022)
25
+ glm::vec3 pos = means[idx];
26
+ glm::vec3 dir = pos - campos;
27
+ dir = dir / glm::length(dir);
28
+
29
+ glm::vec3* sh = ((glm::vec3*)shs) + idx * max_coeffs;
30
+ glm::vec3 result = SH_C0 * sh[0];
31
+
32
+ if (deg > 0)
33
+ {
34
+ float x = dir.x;
35
+ float y = dir.y;
36
+ float z = dir.z;
37
+ result = result - SH_C1 * y * sh[1] + SH_C1 * z * sh[2] - SH_C1 * x * sh[3];
38
+
39
+ if (deg > 1)
40
+ {
41
+ float xx = x * x, yy = y * y, zz = z * z;
42
+ float xy = x * y, yz = y * z, xz = x * z;
43
+ result = result +
44
+ SH_C2[0] * xy * sh[4] +
45
+ SH_C2[1] * yz * sh[5] +
46
+ SH_C2[2] * (2.0f * zz - xx - yy) * sh[6] +
47
+ SH_C2[3] * xz * sh[7] +
48
+ SH_C2[4] * (xx - yy) * sh[8];
49
+
50
+ if (deg > 2)
51
+ {
52
+ result = result +
53
+ SH_C3[0] * y * (3.0f * xx - yy) * sh[9] +
54
+ SH_C3[1] * xy * z * sh[10] +
55
+ SH_C3[2] * y * (4.0f * zz - xx - yy) * sh[11] +
56
+ SH_C3[3] * z * (2.0f * zz - 3.0f * xx - 3.0f * yy) * sh[12] +
57
+ SH_C3[4] * x * (4.0f * zz - xx - yy) * sh[13] +
58
+ SH_C3[5] * z * (xx - yy) * sh[14] +
59
+ SH_C3[6] * x * (xx - 3.0f * yy) * sh[15];
60
+ }
61
+ }
62
+ }
63
+ result += 0.5f;
64
+
65
+ // RGB colors are clamped to positive values. If values are
66
+ // clamped, we need to keep track of this for the backward pass.
67
+ clamped[3 * idx + 0] = (result.x < 0);
68
+ clamped[3 * idx + 1] = (result.y < 0);
69
+ clamped[3 * idx + 2] = (result.z < 0);
70
+ return glm::max(result, 0.0f);
71
+ }
72
+
73
+ // Forward version of 2D covariance matrix computation
74
+ __device__ float3 computeCov2D(const float3& mean, float focal_x, float focal_y, float tan_fovx, float tan_fovy, const float* cov3D, const float* viewmatrix)
75
+ {
76
+ // The following models the steps outlined by equations 29
77
+ // and 31 in "EWA Splatting" (Zwicker et al., 2002).
78
+ // Additionally considers aspect / scaling of viewport.
79
+ // Transposes used to account for row-/column-major conventions.
80
+ float3 t = transformPoint4x3(mean, viewmatrix);
81
+
82
+ const float limx = 1.3f * tan_fovx;
83
+ const float limy = 1.3f * tan_fovy;
84
+ const float txtz = t.x / t.z;
85
+ const float tytz = t.y / t.z;
86
+ t.x = min(limx, max(-limx, txtz)) * t.z;
87
+ t.y = min(limy, max(-limy, tytz)) * t.z;
88
+
89
+ glm::mat3 J = glm::mat3(
90
+ focal_x / t.z, 0.0f, -(focal_x * t.x) / (t.z * t.z),
91
+ 0.0f, focal_y / t.z, -(focal_y * t.y) / (t.z * t.z),
92
+ 0, 0, 0);
93
+
94
+ glm::mat3 W = glm::mat3(
95
+ viewmatrix[0], viewmatrix[4], viewmatrix[8],
96
+ viewmatrix[1], viewmatrix[5], viewmatrix[9],
97
+ viewmatrix[2], viewmatrix[6], viewmatrix[10]);
98
+
99
+ glm::mat3 T = W * J;
100
+
101
+ glm::mat3 Vrk = glm::mat3(
102
+ cov3D[0], cov3D[1], cov3D[2],
103
+ cov3D[1], cov3D[3], cov3D[4],
104
+ cov3D[2], cov3D[4], cov3D[5]);
105
+
106
+ glm::mat3 cov = glm::transpose(T) * glm::transpose(Vrk) * T;
107
+
108
+ // Apply low-pass filter: every Gaussian should be at least
109
+ // one pixel wide/high. Discard 3rd row and column.
110
+ cov[0][0] += 0.3f;
111
+ cov[1][1] += 0.3f;
112
+ return { float(cov[0][0]), float(cov[0][1]), float(cov[1][1]) };
113
+ }
114
+
115
+ // Forward method for converting scale and rotation properties of each
116
+ // Gaussian to a 3D covariance matrix in world space. Also takes care
117
+ // of quaternion normalization.
118
+ __device__ void computeCov3D(const glm::vec3 scale, float mod, const glm::vec4 rot, float* cov3D)
119
+ {
120
+ // Create scaling matrix
121
+ glm::mat3 S = glm::mat3(1.0f);
122
+ S[0][0] = mod * scale.x;
123
+ S[1][1] = mod * scale.y;
124
+ S[2][2] = mod * scale.z;
125
+
126
+ // Normalize quaternion to get valid rotation
127
+ glm::vec4 q = rot;// / glm::length(rot);
128
+ float r = q.x;
129
+ float x = q.y;
130
+ float y = q.z;
131
+ float z = q.w;
132
+
133
+ // Compute rotation matrix from quaternion
134
+ glm::mat3 R = glm::mat3(
135
+ 1.f - 2.f * (y * y + z * z), 2.f * (x * y - r * z), 2.f * (x * z + r * y),
136
+ 2.f * (x * y + r * z), 1.f - 2.f * (x * x + z * z), 2.f * (y * z - r * x),
137
+ 2.f * (x * z - r * y), 2.f * (y * z + r * x), 1.f - 2.f * (x * x + y * y)
138
+ );
139
+
140
+ glm::mat3 M = S * R;
141
+
142
+ // Compute 3D world covariance matrix Sigma
143
+ glm::mat3 Sigma = glm::transpose(M) * M;
144
+
145
+ // Covariance is symmetric, only store upper right
146
+ cov3D[0] = Sigma[0][0];
147
+ cov3D[1] = Sigma[0][1];
148
+ cov3D[2] = Sigma[0][2];
149
+ cov3D[3] = Sigma[1][1];
150
+ cov3D[4] = Sigma[1][2];
151
+ cov3D[5] = Sigma[2][2];
152
+ }
153
+
154
+ // Perform initial steps for each Gaussian prior to rasterization.
155
+ template<int C>
156
+ __global__ void preprocessCUDA(int P, int D, int M,
157
+ const float* orig_points,
158
+ const glm::vec3* scales,
159
+ const float scale_modifier,
160
+ const glm::vec4* rotations,
161
+ const float* opacities,
162
+ const float* shs,
163
+ bool* clamped,
164
+ const float* cov3D_precomp,
165
+ const float* colors_precomp,
166
+ const float* viewmatrix,
167
+ const float* projmatrix,
168
+ const glm::vec3* cam_pos,
169
+ const int W, int H,
170
+ const float tan_fovx, float tan_fovy,
171
+ const float focal_x, float focal_y,
172
+ int* radii,
173
+ float2* points_xy_image,
174
+ float* depths,
175
+ float* cov3Ds,
176
+ float* rgb,
177
+ float4* conic_opacity,
178
+ const dim3 grid,
179
+ uint32_t* tiles_touched,
180
+ bool prefiltered)
181
+ {
182
+ auto idx = cg::this_grid().thread_rank();
183
+ if (idx >= P)
184
+ return;
185
+
186
+ // Initialize radius and touched tiles to 0. If this isn't changed,
187
+ // this Gaussian will not be processed further.
188
+ radii[idx] = 0;
189
+ tiles_touched[idx] = 0;
190
+
191
+ // Perform near culling, quit if outside.
192
+ float3 p_view;
193
+ if (!in_frustum(idx, orig_points, viewmatrix, projmatrix, prefiltered, p_view))
194
+ return;
195
+
196
+ // Transform point by projecting
197
+ float3 p_orig = { orig_points[3 * idx], orig_points[3 * idx + 1], orig_points[3 * idx + 2] };
198
+ float4 p_hom = transformPoint4x4(p_orig, projmatrix);
199
+ float p_w = 1.0f / (p_hom.w + 0.0000001f);
200
+ float3 p_proj = { p_hom.x * p_w, p_hom.y * p_w, p_hom.z * p_w };
201
+
202
+ // If 3D covariance matrix is precomputed, use it, otherwise compute
203
+ // from scaling and rotation parameters.
204
+ const float* cov3D;
205
+ if (cov3D_precomp != nullptr)
206
+ {
207
+ cov3D = cov3D_precomp + idx * 6;
208
+ }
209
+ else
210
+ {
211
+ computeCov3D(scales[idx], scale_modifier, rotations[idx], cov3Ds + idx * 6);
212
+ cov3D = cov3Ds + idx * 6;
213
+ }
214
+
215
+ // Compute 2D screen-space covariance matrix
216
+ float3 cov = computeCov2D(p_orig, focal_x, focal_y, tan_fovx, tan_fovy, cov3D, viewmatrix);
217
+
218
+ // Invert covariance (EWA algorithm)
219
+ float det = (cov.x * cov.z - cov.y * cov.y);
220
+ if (det == 0.0f)
221
+ return;
222
+ float det_inv = 1.f / det;
223
+ float3 conic = { cov.z * det_inv, -cov.y * det_inv, cov.x * det_inv };
224
+
225
+ // Compute extent in screen space (by finding eigenvalues of
226
+ // 2D covariance matrix). Use extent to compute a bounding rectangle
227
+ // of screen-space tiles that this Gaussian overlaps with. Quit if
228
+ // rectangle covers 0 tiles.
229
+ float mid = 0.5f * (cov.x + cov.z);
230
+ float lambda1 = mid + sqrt(max(0.1f, mid * mid - det));
231
+ float lambda2 = mid - sqrt(max(0.1f, mid * mid - det));
232
+ float my_radius = ceil(3.f * sqrt(max(lambda1, lambda2)));
233
+ float2 point_image = { ndc2Pix(p_proj.x, W), ndc2Pix(p_proj.y, H) };
234
+ uint2 rect_min, rect_max;
235
+ getRect(point_image, my_radius, rect_min, rect_max, grid);
236
+ if ((rect_max.x - rect_min.x) * (rect_max.y - rect_min.y) == 0)
237
+ return;
238
+
239
+ // If colors have been precomputed, use them, otherwise convert
240
+ // spherical harmonics coefficients to RGB color.
241
+ if (colors_precomp == nullptr)
242
+ {
243
+ glm::vec3 result = computeColorFromSH(idx, D, M, (glm::vec3*)orig_points, *cam_pos, shs, clamped);
244
+ rgb[idx * C + 0] = result.x;
245
+ rgb[idx * C + 1] = result.y;
246
+ rgb[idx * C + 2] = result.z;
247
+ }
248
+
249
+ // Store some useful helper data for the next steps.
250
+ depths[idx] = p_view.z;
251
+ radii[idx] = my_radius;
252
+ points_xy_image[idx] = point_image;
253
+ // Inverse 2D covariance and opacity neatly pack into one float4
254
+ conic_opacity[idx] = { conic.x, conic.y, conic.z, opacities[idx] };
255
+ tiles_touched[idx] = (rect_max.y - rect_min.y) * (rect_max.x - rect_min.x);
256
+ }
257
+
258
+ // Main rasterization method. Collaboratively works on one tile per
259
+ // block, each thread treats one pixel. Alternates between fetching
260
+ // and rasterizing data.
261
+ template <uint32_t CHANNELS>
262
+ __global__ void __launch_bounds__(BLOCK_X * BLOCK_Y)
263
+ renderCUDA(
264
+ const uint2* __restrict__ ranges,
265
+ const uint32_t* __restrict__ point_list,
266
+ int W, int H,
267
+ const float2* __restrict__ points_xy_image,
268
+ const float* __restrict__ features,
269
+ const float* __restrict__ depths,
270
+ const float4* __restrict__ conic_opacity,
271
+ float* __restrict__ final_T,
272
+ uint32_t* __restrict__ n_contrib,
273
+ const float* __restrict__ bg_color,
274
+ float* __restrict__ out_color,
275
+ float* __restrict__ out_depth)
276
+ {
277
+ // Identify current tile and associated min/max pixel range.
278
+ auto block = cg::this_thread_block();
279
+ uint32_t horizontal_blocks = (W + BLOCK_X - 1) / BLOCK_X;
280
+ uint2 pix_min = { block.group_index().x * BLOCK_X, block.group_index().y * BLOCK_Y };
281
+ uint2 pix_max = { min(pix_min.x + BLOCK_X, W), min(pix_min.y + BLOCK_Y , H) };
282
+ uint2 pix = { pix_min.x + block.thread_index().x, pix_min.y + block.thread_index().y };
283
+ uint32_t pix_id = W * pix.y + pix.x;
284
+ float2 pixf = { (float)pix.x, (float)pix.y };
285
+
286
+ // Check if this thread is associated with a valid pixel or outside.
287
+ bool inside = pix.x < W&& pix.y < H;
288
+ // Done threads can help with fetching, but don't rasterize
289
+ bool done = !inside;
290
+
291
+ // Load start/end range of IDs to process in bit sorted list.
292
+ uint2 range = ranges[block.group_index().y * horizontal_blocks + block.group_index().x];
293
+ const int rounds = ((range.y - range.x + BLOCK_SIZE - 1) / BLOCK_SIZE);
294
+ int toDo = range.y - range.x;
295
+
296
+ // Allocate storage for batches of collectively fetched data.
297
+ __shared__ int collected_id[BLOCK_SIZE];
298
+ __shared__ float2 collected_xy[BLOCK_SIZE];
299
+ __shared__ float4 collected_conic_opacity[BLOCK_SIZE];
300
+
301
+ // Initialize helper variables
302
+ float T = 1.0f;
303
+ uint32_t contributor = 0;
304
+ uint32_t last_contributor = 0;
305
+ float C[CHANNELS] = { 0 };
306
+ float D = { 0 };
307
+ float acc = { 0.000001f };
308
+
309
+ // Iterate over batches until all done or range is complete
310
+ for (int i = 0; i < rounds; i++, toDo -= BLOCK_SIZE)
311
+ {
312
+ // End if entire block votes that it is done rasterizing
313
+ int num_done = __syncthreads_count(done);
314
+ if (num_done == BLOCK_SIZE)
315
+ break;
316
+
317
+ // Collectively fetch per-Gaussian data from global to shared
318
+ int progress = i * BLOCK_SIZE + block.thread_rank();
319
+ if (range.x + progress < range.y)
320
+ {
321
+ int coll_id = point_list[range.x + progress];
322
+ collected_id[block.thread_rank()] = coll_id;
323
+ collected_xy[block.thread_rank()] = points_xy_image[coll_id];
324
+ collected_conic_opacity[block.thread_rank()] = conic_opacity[coll_id];
325
+ }
326
+ block.sync();
327
+
328
+ // Iterate over current batch
329
+ for (int j = 0; !done && j < min(BLOCK_SIZE, toDo); j++)
330
+ {
331
+ // Keep track of current position in range
332
+ contributor++;
333
+
334
+ // Resample using conic matrix (cf. "Surface
335
+ // Splatting" by Zwicker et al., 2001)
336
+ float2 xy = collected_xy[j];
337
+ float2 d = { xy.x - pixf.x, xy.y - pixf.y };
338
+ float4 con_o = collected_conic_opacity[j];
339
+ float power = -0.5f * (con_o.x * d.x * d.x + con_o.z * d.y * d.y) - con_o.y * d.x * d.y;
340
+ if (power > 0.0f)
341
+ continue;
342
+
343
+ // Eq. (2) from 3D Gaussian splatting paper.
344
+ // Obtain alpha by multiplying with Gaussian opacity
345
+ // and its exponential falloff from mean.
346
+ // Avoid numerical instabilities (see paper appendix).
347
+ float alpha = min(0.99f, con_o.w * exp(power));
348
+ if (alpha < 1.0f / 255.0f)
349
+ continue;
350
+ float test_T = T * (1 - alpha);
351
+ if (test_T < 0.0001f)
352
+ {
353
+ done = true;
354
+ continue;
355
+ }
356
+
357
+ // Eq. (3) from 3D Gaussian splatting paper.
358
+ for (int ch = 0; ch < CHANNELS; ch++)
359
+ C[ch] += features[collected_id[j] * CHANNELS + ch] * alpha * T;
360
+
361
+ // if (D < 0.0001f && alpha > 0.05f){
362
+ // D = depths[collected_id[j]];
363
+ // }
364
+ D += depths[collected_id[j]] * alpha * T;
365
+ acc += alpha * T;
366
+
367
+ T = test_T;
368
+
369
+ // Keep track of last range entry to update this
370
+ // pixel.
371
+ last_contributor = contributor;
372
+ }
373
+ }
374
+
375
+ // All threads that treat valid pixel write out their final
376
+ // rendering data to the frame and auxiliary buffers.
377
+ if (inside)
378
+ {
379
+ final_T[pix_id] = T;
380
+ n_contrib[pix_id] = last_contributor;
381
+ for (int ch = 0; ch < CHANNELS; ch++)
382
+ out_color[ch * H * W + pix_id] = C[ch] + T * bg_color[ch];
383
+
384
+ if (acc > 0.5f){
385
+ out_depth[pix_id] = D/acc;
386
+ }else{
387
+ out_depth[pix_id] = 0;
388
+ }
389
+ // out_depth[pix_id] = D;
390
+ }
391
+ }
392
+
393
+ void FORWARD::render(
394
+ const dim3 grid, dim3 block,
395
+ const uint2* ranges,
396
+ const uint32_t* point_list,
397
+ int W, int H,
398
+ const float2* means2D,
399
+ const float* colors,
400
+ const float* depths,
401
+ const float4* conic_opacity,
402
+ float* final_T,
403
+ uint32_t* n_contrib,
404
+ const float* bg_color,
405
+ float* out_color,
406
+ float* out_depth)
407
+ {
408
+ renderCUDA<NUM_CHANNELS> << <grid, block >> > (
409
+ ranges,
410
+ point_list,
411
+ W, H,
412
+ means2D,
413
+ colors,
414
+ depths,
415
+ conic_opacity,
416
+ final_T,
417
+ n_contrib,
418
+ bg_color,
419
+ out_color,
420
+ out_depth);
421
+ }
422
+
423
+ void FORWARD::preprocess(int P, int D, int M,
424
+ const float* means3D,
425
+ const glm::vec3* scales,
426
+ const float scale_modifier,
427
+ const glm::vec4* rotations,
428
+ const float* opacities,
429
+ const float* shs,
430
+ bool* clamped,
431
+ const float* cov3D_precomp,
432
+ const float* colors_precomp,
433
+ const float* viewmatrix,
434
+ const float* projmatrix,
435
+ const glm::vec3* cam_pos,
436
+ const int W, int H,
437
+ const float focal_x, float focal_y,
438
+ const float tan_fovx, float tan_fovy,
439
+ int* radii,
440
+ float2* means2D,
441
+ float* depths,
442
+ float* cov3Ds,
443
+ float* rgb,
444
+ float4* conic_opacity,
445
+ const dim3 grid,
446
+ uint32_t* tiles_touched,
447
+ bool prefiltered)
448
+ {
449
+ preprocessCUDA<NUM_CHANNELS> << <(P + 255) / 256, 256 >> > (
450
+ P, D, M,
451
+ means3D,
452
+ scales,
453
+ scale_modifier,
454
+ rotations,
455
+ opacities,
456
+ shs,
457
+ clamped,
458
+ cov3D_precomp,
459
+ colors_precomp,
460
+ viewmatrix,
461
+ projmatrix,
462
+ cam_pos,
463
+ W, H,
464
+ tan_fovx, tan_fovy,
465
+ focal_x, focal_y,
466
+ radii,
467
+ means2D,
468
+ depths,
469
+ cov3Ds,
470
+ rgb,
471
+ conic_opacity,
472
+ grid,
473
+ tiles_touched,
474
+ prefiltered
475
+ );
476
+ }
submodules/depth-diff-gaussian-rasterization-min/cuda_rasterizer/forward.h ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ * Copyright (C) 2023, Inria
3
+ * GRAPHDECO research group, https://team.inria.fr/graphdeco
4
+ * All rights reserved.
5
+ *
6
+ * This software is free for non-commercial, research and evaluation use
7
+ * under the terms of the LICENSE.md file.
8
+ *
9
+ * For inquiries contact george.drettakis@inria.fr
10
+ */
11
+
12
+ #ifndef CUDA_RASTERIZER_FORWARD_H_INCLUDED
13
+ #define CUDA_RASTERIZER_FORWARD_H_INCLUDED
14
+
15
+ #include <cuda.h>
16
+ #include "cuda_runtime.h"
17
+ #include "device_launch_parameters.h"
18
+ #define GLM_FORCE_CUDA
19
+ #include <glm/glm.hpp>
20
+
21
+ namespace FORWARD
22
+ {
23
+ // Perform initial steps for each Gaussian prior to rasterization.
24
+ void preprocess(int P, int D, int M,
25
+ const float* orig_points,
26
+ const glm::vec3* scales,
27
+ const float scale_modifier,
28
+ const glm::vec4* rotations,
29
+ const float* opacities,
30
+ const float* shs,
31
+ bool* clamped,
32
+ const float* cov3D_precomp,
33
+ const float* colors_precomp,
34
+ const float* viewmatrix,
35
+ const float* projmatrix,
36
+ const glm::vec3* cam_pos,
37
+ const int W, int H,
38
+ const float focal_x, float focal_y,
39
+ const float tan_fovx, float tan_fovy,
40
+ int* radii,
41
+ float2* points_xy_image,
42
+ float* depths,
43
+ float* cov3Ds,
44
+ float* colors,
45
+ float4* conic_opacity,
46
+ const dim3 grid,
47
+ uint32_t* tiles_touched,
48
+ bool prefiltered);
49
+
50
+ // Main rasterization method.
51
+ void render(
52
+ const dim3 grid, dim3 block,
53
+ const uint2* ranges,
54
+ const uint32_t* point_list,
55
+ int W, int H,
56
+ const float2* points_xy_image,
57
+ const float* features,
58
+ const float* depths,
59
+ const float4* conic_opacity,
60
+ float* final_T,
61
+ uint32_t* n_contrib,
62
+ const float* bg_color,
63
+ float* out_color,
64
+ float* out_depth);
65
+ }
66
+
67
+
68
+ #endif
submodules/depth-diff-gaussian-rasterization-min/cuda_rasterizer/rasterizer.h ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ * Copyright (C) 2023, Inria
3
+ * GRAPHDECO research group, https://team.inria.fr/graphdeco
4
+ * All rights reserved.
5
+ *
6
+ * This software is free for non-commercial, research and evaluation use
7
+ * under the terms of the LICENSE.md file.
8
+ *
9
+ * For inquiries contact george.drettakis@inria.fr
10
+ */
11
+
12
+ #ifndef CUDA_RASTERIZER_H_INCLUDED
13
+ #define CUDA_RASTERIZER_H_INCLUDED
14
+
15
+ #include <vector>
16
+ #include <functional>
17
+
18
+ namespace CudaRasterizer
19
+ {
20
+ class Rasterizer
21
+ {
22
+ public:
23
+
24
+ static void markVisible(
25
+ int P,
26
+ float* means3D,
27
+ float* viewmatrix,
28
+ float* projmatrix,
29
+ bool* present);
30
+
31
+ static int forward(
32
+ std::function<char* (size_t)> geometryBuffer,
33
+ std::function<char* (size_t)> binningBuffer,
34
+ std::function<char* (size_t)> imageBuffer,
35
+ const int P, int D, int M,
36
+ const float* background,
37
+ const int width, int height,
38
+ const float* means3D,
39
+ const float* shs,
40
+ const float* colors_precomp,
41
+ const float* opacities,
42
+ const float* scales,
43
+ const float scale_modifier,
44
+ const float* rotations,
45
+ const float* cov3D_precomp,
46
+ const float* viewmatrix,
47
+ const float* projmatrix,
48
+ const float* cam_pos,
49
+ const float tan_fovx, float tan_fovy,
50
+ const bool prefiltered,
51
+ float* out_color,
52
+ float* out_depth,
53
+ int* radii = nullptr,
54
+ bool debug = false);
55
+
56
+ static void backward(
57
+ const int P, int D, int M, int R,
58
+ const float* background,
59
+ const int width, int height,
60
+ const float* means3D,
61
+ const float* shs,
62
+ const float* colors_precomp,
63
+ const float* scales,
64
+ const float scale_modifier,
65
+ const float* rotations,
66
+ const float* cov3D_precomp,
67
+ const float* viewmatrix,
68
+ const float* projmatrix,
69
+ const float* campos,
70
+ const float tan_fovx, float tan_fovy,
71
+ const int* radii,
72
+ char* geom_buffer,
73
+ char* binning_buffer,
74
+ char* image_buffer,
75
+ const float* dL_dpix,
76
+ const float* dL_depths,
77
+ float* dL_dmean2D,
78
+ float* dL_dconic,
79
+ float* dL_dopacity,
80
+ float* dL_dcolor,
81
+ float* dL_dmean3D,
82
+ float* dL_dcov3D,
83
+ float* dL_dsh,
84
+ float* dL_dscale,
85
+ float* dL_drot,
86
+ bool debug);
87
+ };
88
+ };
89
+
90
+ #endif
submodules/depth-diff-gaussian-rasterization-min/cuda_rasterizer/rasterizer_impl.cu ADDED
@@ -0,0 +1,444 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ * Copyright (C) 2023, Inria
3
+ * GRAPHDECO research group, https://team.inria.fr/graphdeco
4
+ * All rights reserved.
5
+ *
6
+ * This software is free for non-commercial, research and evaluation use
7
+ * under the terms of the LICENSE.md file.
8
+ *
9
+ * For inquiries contact george.drettakis@inria.fr
10
+ */
11
+
12
+ #include "rasterizer_impl.h"
13
+ #include <iostream>
14
+ #include <fstream>
15
+ #include <algorithm>
16
+ #include <numeric>
17
+ #include <cuda.h>
18
+ #include "cuda_runtime.h"
19
+ #include "device_launch_parameters.h"
20
+ #include <cub/cub.cuh>
21
+ #include <cub/device/device_radix_sort.cuh>
22
+ #define GLM_FORCE_CUDA
23
+ #include <glm/glm.hpp>
24
+
25
+ #include <cooperative_groups.h>
26
+ #include <cooperative_groups/reduce.h>
27
+ namespace cg = cooperative_groups;
28
+
29
+ #include "auxiliary.h"
30
+ #include "forward.h"
31
+ #include "backward.h"
32
+
33
+ // Helper function to find the next-highest bit of the MSB
34
+ // on the CPU.
35
+ uint32_t getHigherMsb(uint32_t n)
36
+ {
37
+ uint32_t msb = sizeof(n) * 4;
38
+ uint32_t step = msb;
39
+ while (step > 1)
40
+ {
41
+ step /= 2;
42
+ if (n >> msb)
43
+ msb += step;
44
+ else
45
+ msb -= step;
46
+ }
47
+ if (n >> msb)
48
+ msb++;
49
+ return msb;
50
+ }
51
+
52
+ // Wrapper method to call auxiliary coarse frustum containment test.
53
+ // Mark all Gaussians that pass it.
54
+ __global__ void checkFrustum(int P,
55
+ const float* orig_points,
56
+ const float* viewmatrix,
57
+ const float* projmatrix,
58
+ bool* present)
59
+ {
60
+ auto idx = cg::this_grid().thread_rank();
61
+ if (idx >= P)
62
+ return;
63
+
64
+ float3 p_view;
65
+ present[idx] = in_frustum(idx, orig_points, viewmatrix, projmatrix, false, p_view);
66
+ }
67
+
68
+ // Generates one key/value pair for all Gaussian / tile overlaps.
69
+ // Run once per Gaussian (1:N mapping).
70
+ __global__ void duplicateWithKeys(
71
+ int P,
72
+ const float2* points_xy,
73
+ const float* depths,
74
+ const uint32_t* offsets,
75
+ uint64_t* gaussian_keys_unsorted,
76
+ uint32_t* gaussian_values_unsorted,
77
+ int* radii,
78
+ dim3 grid)
79
+ {
80
+ auto idx = cg::this_grid().thread_rank();
81
+ if (idx >= P)
82
+ return;
83
+
84
+ // Generate no key/value pair for invisible Gaussians
85
+ if (radii[idx] > 0)
86
+ {
87
+ // Find this Gaussian's offset in buffer for writing keys/values.
88
+ uint32_t off = (idx == 0) ? 0 : offsets[idx - 1];
89
+ uint2 rect_min, rect_max;
90
+
91
+ getRect(points_xy[idx], radii[idx], rect_min, rect_max, grid);
92
+
93
+ // For each tile that the bounding rect overlaps, emit a
94
+ // key/value pair. The key is | tile ID | depth |,
95
+ // and the value is the ID of the Gaussian. Sorting the values
96
+ // with this key yields Gaussian IDs in a list, such that they
97
+ // are first sorted by tile and then by depth.
98
+ for (int y = rect_min.y; y < rect_max.y; y++)
99
+ {
100
+ for (int x = rect_min.x; x < rect_max.x; x++)
101
+ {
102
+ uint64_t key = y * grid.x + x;
103
+ key <<= 32;
104
+ key |= *((uint32_t*)&depths[idx]);
105
+ gaussian_keys_unsorted[off] = key;
106
+ gaussian_values_unsorted[off] = idx;
107
+ off++;
108
+ }
109
+ }
110
+ }
111
+ }
112
+
113
+ // Check keys to see if it is at the start/end of one tile's range in
114
+ // the full sorted list. If yes, write start/end of this tile.
115
+ // Run once per instanced (duplicated) Gaussian ID.
116
+ __global__ void identifyTileRanges(int L, uint64_t* point_list_keys, uint2* ranges)
117
+ {
118
+ auto idx = cg::this_grid().thread_rank();
119
+ if (idx >= L)
120
+ return;
121
+
122
+ // Read tile ID from key. Update start/end of tile range if at limit.
123
+ uint64_t key = point_list_keys[idx];
124
+ uint32_t currtile = key >> 32;
125
+ if (idx == 0)
126
+ ranges[currtile].x = 0;
127
+ else
128
+ {
129
+ uint32_t prevtile = point_list_keys[idx - 1] >> 32;
130
+ if (currtile != prevtile)
131
+ {
132
+ ranges[prevtile].y = idx;
133
+ ranges[currtile].x = idx;
134
+ }
135
+ }
136
+ if (idx == L - 1)
137
+ ranges[currtile].y = L;
138
+ }
139
+
140
+ // Mark Gaussians as visible/invisible, based on view frustum testing
141
+ void CudaRasterizer::Rasterizer::markVisible(
142
+ int P,
143
+ float* means3D,
144
+ float* viewmatrix,
145
+ float* projmatrix,
146
+ bool* present)
147
+ {
148
+ checkFrustum << <(P + 255) / 256, 256 >> > (
149
+ P,
150
+ means3D,
151
+ viewmatrix, projmatrix,
152
+ present);
153
+ }
154
+
155
+ CudaRasterizer::GeometryState CudaRasterizer::GeometryState::fromChunk(char*& chunk, size_t P)
156
+ {
157
+ GeometryState geom;
158
+ obtain(chunk, geom.depths, P, 128);
159
+ obtain(chunk, geom.clamped, P * 3, 128);
160
+ obtain(chunk, geom.internal_radii, P, 128);
161
+ obtain(chunk, geom.means2D, P, 128);
162
+ obtain(chunk, geom.cov3D, P * 6, 128);
163
+ obtain(chunk, geom.conic_opacity, P, 128);
164
+ obtain(chunk, geom.rgb, P * 3, 128);
165
+ obtain(chunk, geom.tiles_touched, P, 128);
166
+ cub::DeviceScan::InclusiveSum(nullptr, geom.scan_size, geom.tiles_touched, geom.tiles_touched, P);
167
+ obtain(chunk, geom.scanning_space, geom.scan_size, 128);
168
+ obtain(chunk, geom.point_offsets, P, 128);
169
+ return geom;
170
+ }
171
+
172
+ CudaRasterizer::ImageState CudaRasterizer::ImageState::fromChunk(char*& chunk, size_t N)
173
+ {
174
+ ImageState img;
175
+ obtain(chunk, img.accum_alpha, N, 128);
176
+ obtain(chunk, img.n_contrib, N, 128);
177
+ obtain(chunk, img.ranges, N, 128);
178
+ return img;
179
+ }
180
+
181
+ CudaRasterizer::BinningState CudaRasterizer::BinningState::fromChunk(char*& chunk, size_t P)
182
+ {
183
+ BinningState binning;
184
+ obtain(chunk, binning.point_list, P, 128);
185
+ obtain(chunk, binning.point_list_unsorted, P, 128);
186
+ obtain(chunk, binning.point_list_keys, P, 128);
187
+ obtain(chunk, binning.point_list_keys_unsorted, P, 128);
188
+ cub::DeviceRadixSort::SortPairs(
189
+ nullptr, binning.sorting_size,
190
+ binning.point_list_keys_unsorted, binning.point_list_keys,
191
+ binning.point_list_unsorted, binning.point_list, P);
192
+ obtain(chunk, binning.list_sorting_space, binning.sorting_size, 128);
193
+ return binning;
194
+ }
195
+
196
+ // Forward rendering procedure for differentiable rasterization
197
+ // of Gaussians.
198
+ int CudaRasterizer::Rasterizer::forward(
199
+ std::function<char* (size_t)> geometryBuffer,
200
+ std::function<char* (size_t)> binningBuffer,
201
+ std::function<char* (size_t)> imageBuffer,
202
+ const int P, int D, int M,
203
+ const float* background,
204
+ const int width, int height,
205
+ const float* means3D,
206
+ const float* shs,
207
+ const float* colors_precomp,
208
+ const float* opacities,
209
+ const float* scales,
210
+ const float scale_modifier,
211
+ const float* rotations,
212
+ const float* cov3D_precomp,
213
+ const float* viewmatrix,
214
+ const float* projmatrix,
215
+ const float* cam_pos,
216
+ const float tan_fovx, float tan_fovy,
217
+ const bool prefiltered,
218
+ float* out_color,
219
+ float* out_depth,
220
+ int* radii,
221
+ bool debug)
222
+ {
223
+ const float focal_y = height / (2.0f * tan_fovy);
224
+ const float focal_x = width / (2.0f * tan_fovx);
225
+
226
+ size_t chunk_size = required<GeometryState>(P);
227
+ char* chunkptr = geometryBuffer(chunk_size);
228
+ GeometryState geomState = GeometryState::fromChunk(chunkptr, P);
229
+
230
+ if (radii == nullptr)
231
+ {
232
+ radii = geomState.internal_radii;
233
+ }
234
+
235
+ dim3 tile_grid((width + BLOCK_X - 1) / BLOCK_X, (height + BLOCK_Y - 1) / BLOCK_Y, 1);
236
+ dim3 block(BLOCK_X, BLOCK_Y, 1);
237
+
238
+ // Dynamically resize image-based auxiliary buffers during training
239
+ size_t img_chunk_size = required<ImageState>(width * height);
240
+ char* img_chunkptr = imageBuffer(img_chunk_size);
241
+ ImageState imgState = ImageState::fromChunk(img_chunkptr, width * height);
242
+
243
+ if (NUM_CHANNELS != 3 && colors_precomp == nullptr)
244
+ {
245
+ throw std::runtime_error("For non-RGB, provide precomputed Gaussian colors!");
246
+ }
247
+
248
+ // Run preprocessing per-Gaussian (transformation, bounding, conversion of SHs to RGB)
249
+ CHECK_CUDA(FORWARD::preprocess(
250
+ P, D, M,
251
+ means3D,
252
+ (glm::vec3*)scales,
253
+ scale_modifier,
254
+ (glm::vec4*)rotations,
255
+ opacities,
256
+ shs,
257
+ geomState.clamped,
258
+ cov3D_precomp,
259
+ colors_precomp,
260
+ viewmatrix, projmatrix,
261
+ (glm::vec3*)cam_pos,
262
+ width, height,
263
+ focal_x, focal_y,
264
+ tan_fovx, tan_fovy,
265
+ radii,
266
+ geomState.means2D,
267
+ geomState.depths,
268
+ geomState.cov3D,
269
+ geomState.rgb,
270
+ geomState.conic_opacity,
271
+ tile_grid,
272
+ geomState.tiles_touched,
273
+ prefiltered
274
+ ), debug)
275
+
276
+ // Compute prefix sum over full list of touched tile counts by Gaussians
277
+ // E.g., [2, 3, 0, 2, 1] -> [2, 5, 5, 7, 8]
278
+ CHECK_CUDA(cub::DeviceScan::InclusiveSum(geomState.scanning_space, geomState.scan_size, geomState.tiles_touched, geomState.point_offsets, P), debug)
279
+
280
+ // Retrieve total number of Gaussian instances to launch and resize aux buffers
281
+ int num_rendered;
282
+ CHECK_CUDA(cudaMemcpy(&num_rendered, geomState.point_offsets + P - 1, sizeof(int), cudaMemcpyDeviceToHost), debug);
283
+
284
+ size_t binning_chunk_size = required<BinningState>(num_rendered);
285
+ char* binning_chunkptr = binningBuffer(binning_chunk_size);
286
+ BinningState binningState = BinningState::fromChunk(binning_chunkptr, num_rendered);
287
+
288
+ // For each instance to be rendered, produce adequate [ tile | depth ] key
289
+ // and corresponding dublicated Gaussian indices to be sorted
290
+ duplicateWithKeys << <(P + 255) / 256, 256 >> > (
291
+ P,
292
+ geomState.means2D,
293
+ geomState.depths,
294
+ geomState.point_offsets,
295
+ binningState.point_list_keys_unsorted,
296
+ binningState.point_list_unsorted,
297
+ radii,
298
+ tile_grid)
299
+ CHECK_CUDA(, debug)
300
+
301
+ int bit = getHigherMsb(tile_grid.x * tile_grid.y);
302
+
303
+ // Sort complete list of (duplicated) Gaussian indices by keys
304
+ CHECK_CUDA(cub::DeviceRadixSort::SortPairs(
305
+ binningState.list_sorting_space,
306
+ binningState.sorting_size,
307
+ binningState.point_list_keys_unsorted, binningState.point_list_keys,
308
+ binningState.point_list_unsorted, binningState.point_list,
309
+ num_rendered, 0, 32 + bit), debug)
310
+
311
+ CHECK_CUDA(cudaMemset(imgState.ranges, 0, tile_grid.x * tile_grid.y * sizeof(uint2)), debug);
312
+
313
+ // Identify start and end of per-tile workloads in sorted list
314
+ if (num_rendered > 0)
315
+ identifyTileRanges << <(num_rendered + 255) / 256, 256 >> > (
316
+ num_rendered,
317
+ binningState.point_list_keys,
318
+ imgState.ranges);
319
+ CHECK_CUDA(, debug)
320
+
321
+ // Let each tile blend its range of Gaussians independently in parallel
322
+ const float* feature_ptr = colors_precomp != nullptr ? colors_precomp : geomState.rgb;
323
+ CHECK_CUDA(FORWARD::render(
324
+ tile_grid, block,
325
+ imgState.ranges,
326
+ binningState.point_list,
327
+ width, height,
328
+ geomState.means2D,
329
+ feature_ptr,
330
+ geomState.depths,
331
+ geomState.conic_opacity,
332
+ imgState.accum_alpha,
333
+ imgState.n_contrib,
334
+ background,
335
+ out_color,
336
+ out_depth), debug)
337
+
338
+ return num_rendered;
339
+ }
340
+
341
+ // Produce necessary gradients for optimization, corresponding
342
+ // to forward render pass
343
+ void CudaRasterizer::Rasterizer::backward(
344
+ const int P, int D, int M, int R,
345
+ const float* background,
346
+ const int width, int height,
347
+ const float* means3D,
348
+ const float* shs,
349
+ const float* colors_precomp,
350
+ const float* scales,
351
+ const float scale_modifier,
352
+ const float* rotations,
353
+ const float* cov3D_precomp,
354
+ const float* viewmatrix,
355
+ const float* projmatrix,
356
+ const float* campos,
357
+ const float tan_fovx, float tan_fovy,
358
+ const int* radii,
359
+ char* geom_buffer,
360
+ char* binning_buffer,
361
+ char* img_buffer,
362
+ const float* dL_dpix,
363
+ const float* dL_depths,
364
+ float* dL_dmean2D,
365
+ float* dL_dconic,
366
+ float* dL_dopacity,
367
+ float* dL_dcolor,
368
+ float* dL_dmean3D,
369
+ float* dL_dcov3D,
370
+ float* dL_dsh,
371
+ float* dL_dscale,
372
+ float* dL_drot,
373
+ bool debug)
374
+ {
375
+ GeometryState geomState = GeometryState::fromChunk(geom_buffer, P);
376
+ BinningState binningState = BinningState::fromChunk(binning_buffer, R);
377
+ ImageState imgState = ImageState::fromChunk(img_buffer, width * height);
378
+
379
+ if (radii == nullptr)
380
+ {
381
+ radii = geomState.internal_radii;
382
+ }
383
+
384
+ const float focal_y = height / (2.0f * tan_fovy);
385
+ const float focal_x = width / (2.0f * tan_fovx);
386
+
387
+ const dim3 tile_grid((width + BLOCK_X - 1) / BLOCK_X, (height + BLOCK_Y - 1) / BLOCK_Y, 1);
388
+ const dim3 block(BLOCK_X, BLOCK_Y, 1);
389
+
390
+ // Compute loss gradients w.r.t. 2D mean position, conic matrix,
391
+ // opacity and RGB of Gaussians from per-pixel loss gradients.
392
+ // If we were given precomputed colors and not SHs, use them.
393
+ const float* color_ptr = (colors_precomp != nullptr) ? colors_precomp : geomState.rgb;
394
+ const float* depth_ptr = geomState.depths;
395
+ CHECK_CUDA(BACKWARD::render(
396
+ tile_grid,
397
+ block,
398
+ imgState.ranges,
399
+ binningState.point_list,
400
+ width, height,
401
+ background,
402
+ geomState.means2D,
403
+ geomState.conic_opacity,
404
+ (float3*)means3D,
405
+ color_ptr,
406
+ depth_ptr,
407
+ projmatrix,
408
+ imgState.accum_alpha,
409
+ imgState.n_contrib,
410
+ dL_dpix,
411
+ dL_depths,
412
+ (float3*)dL_dmean2D,
413
+ (float4*)dL_dconic,
414
+ (float3*)dL_dmean3D,
415
+ dL_dopacity,
416
+ dL_dcolor), debug)
417
+
418
+ // Take care of the rest of preprocessing. Was the precomputed covariance
419
+ // given to us or a scales/rot pair? If precomputed, pass that. If not,
420
+ // use the one we computed ourselves.
421
+ const float* cov3D_ptr = (cov3D_precomp != nullptr) ? cov3D_precomp : geomState.cov3D;
422
+ CHECK_CUDA(BACKWARD::preprocess(P, D, M,
423
+ (float3*)means3D,
424
+ radii,
425
+ shs,
426
+ geomState.clamped,
427
+ (glm::vec3*)scales,
428
+ (glm::vec4*)rotations,
429
+ scale_modifier,
430
+ cov3D_ptr,
431
+ viewmatrix,
432
+ projmatrix,
433
+ focal_x, focal_y,
434
+ tan_fovx, tan_fovy,
435
+ (glm::vec3*)campos,
436
+ (float3*)dL_dmean2D,
437
+ dL_dconic,
438
+ (glm::vec3*)dL_dmean3D,
439
+ dL_dcolor,
440
+ dL_dcov3D,
441
+ dL_dsh,
442
+ (glm::vec3*)dL_dscale,
443
+ (glm::vec4*)dL_drot), debug)
444
+ }
submodules/depth-diff-gaussian-rasterization-min/cuda_rasterizer/rasterizer_impl.h ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ * Copyright (C) 2023, Inria
3
+ * GRAPHDECO research group, https://team.inria.fr/graphdeco
4
+ * All rights reserved.
5
+ *
6
+ * This software is free for non-commercial, research and evaluation use
7
+ * under the terms of the LICENSE.md file.
8
+ *
9
+ * For inquiries contact george.drettakis@inria.fr
10
+ */
11
+
12
+ #pragma once
13
+
14
+ #include <iostream>
15
+ #include <vector>
16
+ #include "rasterizer.h"
17
+ #include <cuda_runtime_api.h>
18
+
19
+ namespace CudaRasterizer
20
+ {
21
+ template <typename T>
22
+ static void obtain(char*& chunk, T*& ptr, std::size_t count, std::size_t alignment)
23
+ {
24
+ std::size_t offset = (reinterpret_cast<std::uintptr_t>(chunk) + alignment - 1) & ~(alignment - 1);
25
+ ptr = reinterpret_cast<T*>(offset);
26
+ chunk = reinterpret_cast<char*>(ptr + count);
27
+ }
28
+
29
+ struct GeometryState
30
+ {
31
+ size_t scan_size;
32
+ float* depths;
33
+ char* scanning_space;
34
+ bool* clamped;
35
+ int* internal_radii;
36
+ float2* means2D;
37
+ float* cov3D;
38
+ float4* conic_opacity;
39
+ float* rgb;
40
+ uint32_t* point_offsets;
41
+ uint32_t* tiles_touched;
42
+
43
+ static GeometryState fromChunk(char*& chunk, size_t P);
44
+ };
45
+
46
+ struct ImageState
47
+ {
48
+ uint2* ranges;
49
+ uint32_t* n_contrib;
50
+ float* accum_alpha;
51
+
52
+ static ImageState fromChunk(char*& chunk, size_t N);
53
+ };
54
+
55
+ struct BinningState
56
+ {
57
+ size_t sorting_size;
58
+ uint64_t* point_list_keys_unsorted;
59
+ uint64_t* point_list_keys;
60
+ uint32_t* point_list_unsorted;
61
+ uint32_t* point_list;
62
+ char* list_sorting_space;
63
+
64
+ static BinningState fromChunk(char*& chunk, size_t P);
65
+ };
66
+
67
+ template<typename T>
68
+ size_t required(size_t P)
69
+ {
70
+ char* size = nullptr;
71
+ T::fromChunk(size, P);
72
+ return ((size_t)size) + 128;
73
+ }
74
+ };
submodules/depth-diff-gaussian-rasterization-min/depth_diff_gaussian_rasterization_min.egg-info/PKG-INFO ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Metadata-Version: 2.1
2
+ Name: depth-diff-gaussian-rasterization-min
3
+ Version: 0.0.0
4
+ License-File: LICENSE.md
submodules/depth-diff-gaussian-rasterization-min/depth_diff_gaussian_rasterization_min.egg-info/SOURCES.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ LICENSE.md
2
+ README.md
3
+ ext.cpp
4
+ rasterize_points.cu
5
+ setup.py
6
+ cuda_rasterizer/backward.cu
7
+ cuda_rasterizer/forward.cu
8
+ cuda_rasterizer/rasterizer_impl.cu
9
+ depth_diff_gaussian_rasterization_min/__init__.py
10
+ depth_diff_gaussian_rasterization_min.egg-info/PKG-INFO
11
+ depth_diff_gaussian_rasterization_min.egg-info/SOURCES.txt
12
+ depth_diff_gaussian_rasterization_min.egg-info/dependency_links.txt
13
+ depth_diff_gaussian_rasterization_min.egg-info/top_level.txt
submodules/depth-diff-gaussian-rasterization-min/depth_diff_gaussian_rasterization_min.egg-info/dependency_links.txt ADDED
@@ -0,0 +1 @@
 
 
1
+
submodules/depth-diff-gaussian-rasterization-min/depth_diff_gaussian_rasterization_min.egg-info/top_level.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ depth_diff_gaussian_rasterization_min
submodules/depth-diff-gaussian-rasterization-min/depth_diff_gaussian_rasterization_min/.ipynb_checkpoints/__init__-checkpoint.py ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright (C) 2023, Inria
3
+ # GRAPHDECO research group, https://team.inria.fr/graphdeco
4
+ # All rights reserved.
5
+ #
6
+ # This software is free for non-commercial, research and evaluation use
7
+ # under the terms of the LICENSE.md file.
8
+ #
9
+ # For inquiries contact george.drettakis@inria.fr
10
+ #
11
+
12
+ from typing import NamedTuple
13
+ import torch.nn as nn
14
+ import torch
15
+ from . import _C
16
+
17
+ def cpu_deep_copy_tuple(input_tuple):
18
+ copied_tensors = [item.cpu().clone() if isinstance(item, torch.Tensor) else item for item in input_tuple]
19
+ return tuple(copied_tensors)
20
+
21
+ def rasterize_gaussians(
22
+ means3D,
23
+ means2D,
24
+ sh,
25
+ colors_precomp,
26
+ opacities,
27
+ scales,
28
+ rotations,
29
+ cov3Ds_precomp,
30
+ raster_settings,
31
+ ):
32
+ return _RasterizeGaussians.apply(
33
+ means3D,
34
+ means2D,
35
+ sh,
36
+ colors_precomp,
37
+ opacities,
38
+ scales,
39
+ rotations,
40
+ cov3Ds_precomp,
41
+ raster_settings,
42
+ )
43
+
44
+ class _RasterizeGaussians(torch.autograd.Function):
45
+ @staticmethod
46
+ def forward(
47
+ ctx,
48
+ means3D,
49
+ means2D,
50
+ sh,
51
+ colors_precomp,
52
+ opacities,
53
+ scales,
54
+ rotations,
55
+ cov3Ds_precomp,
56
+ raster_settings,
57
+ ):
58
+
59
+ # Restructure arguments the way that the C++ lib expects them
60
+ args = (
61
+ raster_settings.bg,
62
+ means3D,
63
+ colors_precomp,
64
+ opacities,
65
+ scales,
66
+ rotations,
67
+ raster_settings.scale_modifier,
68
+ cov3Ds_precomp,
69
+ raster_settings.viewmatrix,
70
+ raster_settings.projmatrix,
71
+ raster_settings.tanfovx,
72
+ raster_settings.tanfovy,
73
+ raster_settings.image_height,
74
+ raster_settings.image_width,
75
+ sh,
76
+ raster_settings.sh_degree,
77
+ raster_settings.campos,
78
+ raster_settings.prefiltered,
79
+ raster_settings.debug
80
+ )
81
+
82
+ # Invoke C++/CUDA rasterizer
83
+ if raster_settings.debug:
84
+ cpu_args = cpu_deep_copy_tuple(args) # Copy them before they can be corrupted
85
+ try:
86
+ num_rendered, color, depth, radii, geomBuffer, binningBuffer, imgBuffer = _C.rasterize_gaussians(*args)
87
+ except Exception as ex:
88
+ torch.save(cpu_args, "snapshot_fw.dump")
89
+ print("\nAn error occured in forward. Please forward snapshot_fw.dump for debugging.")
90
+ raise ex
91
+ else:
92
+ num_rendered, color, depth, radii, geomBuffer, binningBuffer, imgBuffer = _C.rasterize_gaussians(*args)
93
+
94
+ # Keep relevant tensors for backward
95
+ ctx.raster_settings = raster_settings
96
+ ctx.num_rendered = num_rendered
97
+ ctx.save_for_backward(colors_precomp, means3D, scales, rotations, cov3Ds_precomp, radii, sh, geomBuffer, binningBuffer, imgBuffer)
98
+ return color, radii, depth
99
+
100
+ @staticmethod
101
+ def backward(ctx, grad_out_color, grad_radii, grad_depth):
102
+
103
+ # Restore necessary values from context
104
+ num_rendered = ctx.num_rendered
105
+ raster_settings = ctx.raster_settings
106
+ colors_precomp, means3D, scales, rotations, cov3Ds_precomp, radii, sh, geomBuffer, binningBuffer, imgBuffer = ctx.saved_tensors
107
+
108
+ # Restructure args as C++ method expects them
109
+ args = (raster_settings.bg,
110
+ means3D,
111
+ radii,
112
+ colors_precomp,
113
+ scales,
114
+ rotations,
115
+ raster_settings.scale_modifier,
116
+ cov3Ds_precomp,
117
+ raster_settings.viewmatrix,
118
+ raster_settings.projmatrix,
119
+ raster_settings.tanfovx,
120
+ raster_settings.tanfovy,
121
+ grad_out_color,
122
+ grad_depth,
123
+ sh,
124
+ raster_settings.sh_degree,
125
+ raster_settings.campos,
126
+ geomBuffer,
127
+ num_rendered,
128
+ binningBuffer,
129
+ imgBuffer,
130
+ raster_settings.debug)
131
+
132
+ # Compute gradients for relevant tensors by invoking backward method
133
+ if raster_settings.debug:
134
+ cpu_args = cpu_deep_copy_tuple(args) # Copy them before they can be corrupted
135
+ try:
136
+ grad_means2D, grad_colors_precomp, grad_opacities, grad_means3D, grad_cov3Ds_precomp, grad_sh, grad_scales, grad_rotations = _C.rasterize_gaussians_backward(*args)
137
+ except Exception as ex:
138
+ torch.save(cpu_args, "snapshot_bw.dump")
139
+ print("\nAn error occured in backward. Writing snapshot_bw.dump for debugging.\n")
140
+ raise ex
141
+ else:
142
+ grad_means2D, grad_colors_precomp, grad_opacities, grad_means3D, grad_cov3Ds_precomp, grad_sh, grad_scales, grad_rotations = _C.rasterize_gaussians_backward(*args)
143
+
144
+ grads = (
145
+ grad_means3D,
146
+ grad_means2D,
147
+ grad_sh,
148
+ grad_colors_precomp,
149
+ grad_opacities,
150
+ grad_scales,
151
+ grad_rotations,
152
+ grad_cov3Ds_precomp,
153
+ None,
154
+ )
155
+
156
+ return grads
157
+
158
+ class GaussianRasterizationSettings(NamedTuple):
159
+ image_height: int
160
+ image_width: int
161
+ tanfovx : float
162
+ tanfovy : float
163
+ bg : torch.Tensor
164
+ scale_modifier : float
165
+ viewmatrix : torch.Tensor
166
+ projmatrix : torch.Tensor
167
+ sh_degree : int
168
+ campos : torch.Tensor
169
+ prefiltered : bool
170
+ debug : bool
171
+
172
+ class GaussianRasterizer(nn.Module):
173
+ def __init__(self, raster_settings):
174
+ super().__init__()
175
+ self.raster_settings = raster_settings
176
+
177
+ def markVisible(self, positions):
178
+ # Mark visible points (based on frustum culling for camera) with a boolean
179
+ with torch.no_grad():
180
+ raster_settings = self.raster_settings
181
+ visible = _C.mark_visible(
182
+ positions,
183
+ raster_settings.viewmatrix,
184
+ raster_settings.projmatrix)
185
+
186
+ return visible
187
+
188
+ def forward(self, means3D, means2D, opacities, shs = None, colors_precomp = None, scales = None, rotations = None, cov3D_precomp = None):
189
+
190
+ raster_settings = self.raster_settings
191
+
192
+ if (shs is None and colors_precomp is None) or (shs is not None and colors_precomp is not None):
193
+ raise Exception('Please provide excatly one of either SHs or precomputed colors!')
194
+
195
+ if ((scales is None or rotations is None) and cov3D_precomp is None) or ((scales is not None or rotations is not None) and cov3D_precomp is not None):
196
+ raise Exception('Please provide exactly one of either scale/rotation pair or precomputed 3D covariance!')
197
+
198
+ if shs is None:
199
+ shs = torch.Tensor([])
200
+ if colors_precomp is None:
201
+ colors_precomp = torch.Tensor([])
202
+
203
+ if scales is None:
204
+ scales = torch.Tensor([])
205
+ if rotations is None:
206
+ rotations = torch.Tensor([])
207
+ if cov3D_precomp is None:
208
+ cov3D_precomp = torch.Tensor([])
209
+
210
+ # Invoke C++/CUDA rasterization routine
211
+ return rasterize_gaussians(
212
+ means3D,
213
+ means2D,
214
+ shs,
215
+ colors_precomp,
216
+ opacities,
217
+ scales,
218
+ rotations,
219
+ cov3D_precomp,
220
+ raster_settings,
221
+ )
222
+
submodules/depth-diff-gaussian-rasterization-min/depth_diff_gaussian_rasterization_min/__init__.py ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright (C) 2023, Inria
3
+ # GRAPHDECO research group, https://team.inria.fr/graphdeco
4
+ # All rights reserved.
5
+ #
6
+ # This software is free for non-commercial, research and evaluation use
7
+ # under the terms of the LICENSE.md file.
8
+ #
9
+ # For inquiries contact george.drettakis@inria.fr
10
+ #
11
+
12
+ from typing import NamedTuple
13
+ import torch.nn as nn
14
+ import torch
15
+ from . import _C
16
+
17
+ def cpu_deep_copy_tuple(input_tuple):
18
+ copied_tensors = [item.cpu().clone() if isinstance(item, torch.Tensor) else item for item in input_tuple]
19
+ return tuple(copied_tensors)
20
+
21
+ def rasterize_gaussians(
22
+ means3D,
23
+ means2D,
24
+ sh,
25
+ colors_precomp,
26
+ opacities,
27
+ scales,
28
+ rotations,
29
+ cov3Ds_precomp,
30
+ raster_settings,
31
+ ):
32
+ return _RasterizeGaussians.apply(
33
+ means3D,
34
+ means2D,
35
+ sh,
36
+ colors_precomp,
37
+ opacities,
38
+ scales,
39
+ rotations,
40
+ cov3Ds_precomp,
41
+ raster_settings,
42
+ )
43
+
44
+ class _RasterizeGaussians(torch.autograd.Function):
45
+ @staticmethod
46
+ def forward(
47
+ ctx,
48
+ means3D,
49
+ means2D,
50
+ sh,
51
+ colors_precomp,
52
+ opacities,
53
+ scales,
54
+ rotations,
55
+ cov3Ds_precomp,
56
+ raster_settings,
57
+ ):
58
+
59
+ # Restructure arguments the way that the C++ lib expects them
60
+ args = (
61
+ raster_settings.bg,
62
+ means3D,
63
+ colors_precomp,
64
+ opacities,
65
+ scales,
66
+ rotations,
67
+ raster_settings.scale_modifier,
68
+ cov3Ds_precomp,
69
+ raster_settings.viewmatrix,
70
+ raster_settings.projmatrix,
71
+ raster_settings.tanfovx,
72
+ raster_settings.tanfovy,
73
+ raster_settings.image_height,
74
+ raster_settings.image_width,
75
+ sh,
76
+ raster_settings.sh_degree,
77
+ raster_settings.campos,
78
+ raster_settings.prefiltered,
79
+ raster_settings.debug
80
+ )
81
+
82
+ # Invoke C++/CUDA rasterizer
83
+ if raster_settings.debug:
84
+ cpu_args = cpu_deep_copy_tuple(args) # Copy them before they can be corrupted
85
+ try:
86
+ num_rendered, color, depth, radii, geomBuffer, binningBuffer, imgBuffer = _C.rasterize_gaussians(*args)
87
+ except Exception as ex:
88
+ torch.save(cpu_args, "snapshot_fw.dump")
89
+ print("\nAn error occured in forward. Please forward snapshot_fw.dump for debugging.")
90
+ raise ex
91
+ else:
92
+ num_rendered, color, depth, radii, geomBuffer, binningBuffer, imgBuffer = _C.rasterize_gaussians(*args)
93
+
94
+ # Keep relevant tensors for backward
95
+ ctx.raster_settings = raster_settings
96
+ ctx.num_rendered = num_rendered
97
+ ctx.save_for_backward(colors_precomp, means3D, scales, rotations, cov3Ds_precomp, radii, sh, geomBuffer, binningBuffer, imgBuffer)
98
+ return color, radii, depth
99
+
100
+ @staticmethod
101
+ def backward(ctx, grad_out_color, grad_radii, grad_depth):
102
+
103
+ # Restore necessary values from context
104
+ num_rendered = ctx.num_rendered
105
+ raster_settings = ctx.raster_settings
106
+ colors_precomp, means3D, scales, rotations, cov3Ds_precomp, radii, sh, geomBuffer, binningBuffer, imgBuffer = ctx.saved_tensors
107
+
108
+ # Restructure args as C++ method expects them
109
+ args = (raster_settings.bg,
110
+ means3D,
111
+ radii,
112
+ colors_precomp,
113
+ scales,
114
+ rotations,
115
+ raster_settings.scale_modifier,
116
+ cov3Ds_precomp,
117
+ raster_settings.viewmatrix,
118
+ raster_settings.projmatrix,
119
+ raster_settings.tanfovx,
120
+ raster_settings.tanfovy,
121
+ grad_out_color,
122
+ grad_depth,
123
+ sh,
124
+ raster_settings.sh_degree,
125
+ raster_settings.campos,
126
+ geomBuffer,
127
+ num_rendered,
128
+ binningBuffer,
129
+ imgBuffer,
130
+ raster_settings.debug)
131
+
132
+ # Compute gradients for relevant tensors by invoking backward method
133
+ if raster_settings.debug:
134
+ cpu_args = cpu_deep_copy_tuple(args) # Copy them before they can be corrupted
135
+ try:
136
+ grad_means2D, grad_colors_precomp, grad_opacities, grad_means3D, grad_cov3Ds_precomp, grad_sh, grad_scales, grad_rotations = _C.rasterize_gaussians_backward(*args)
137
+ except Exception as ex:
138
+ torch.save(cpu_args, "snapshot_bw.dump")
139
+ print("\nAn error occured in backward. Writing snapshot_bw.dump for debugging.\n")
140
+ raise ex
141
+ else:
142
+ grad_means2D, grad_colors_precomp, grad_opacities, grad_means3D, grad_cov3Ds_precomp, grad_sh, grad_scales, grad_rotations = _C.rasterize_gaussians_backward(*args)
143
+
144
+ grads = (
145
+ grad_means3D,
146
+ grad_means2D,
147
+ grad_sh,
148
+ grad_colors_precomp,
149
+ grad_opacities,
150
+ grad_scales,
151
+ grad_rotations,
152
+ grad_cov3Ds_precomp,
153
+ None,
154
+ )
155
+
156
+ return grads
157
+
158
+ class GaussianRasterizationSettings(NamedTuple):
159
+ image_height: int
160
+ image_width: int
161
+ tanfovx : float
162
+ tanfovy : float
163
+ bg : torch.Tensor
164
+ scale_modifier : float
165
+ viewmatrix : torch.Tensor
166
+ projmatrix : torch.Tensor
167
+ sh_degree : int
168
+ campos : torch.Tensor
169
+ prefiltered : bool
170
+ debug : bool
171
+
172
+ class GaussianRasterizer(nn.Module):
173
+ def __init__(self, raster_settings):
174
+ super().__init__()
175
+ self.raster_settings = raster_settings
176
+
177
+ def markVisible(self, positions):
178
+ # Mark visible points (based on frustum culling for camera) with a boolean
179
+ with torch.no_grad():
180
+ raster_settings = self.raster_settings
181
+ visible = _C.mark_visible(
182
+ positions,
183
+ raster_settings.viewmatrix,
184
+ raster_settings.projmatrix)
185
+
186
+ return visible
187
+
188
+ def forward(self, means3D, means2D, opacities, shs = None, colors_precomp = None, scales = None, rotations = None, cov3D_precomp = None):
189
+
190
+ raster_settings = self.raster_settings
191
+
192
+ if (shs is None and colors_precomp is None) or (shs is not None and colors_precomp is not None):
193
+ raise Exception('Please provide excatly one of either SHs or precomputed colors!')
194
+
195
+ if ((scales is None or rotations is None) and cov3D_precomp is None) or ((scales is not None or rotations is not None) and cov3D_precomp is not None):
196
+ raise Exception('Please provide exactly one of either scale/rotation pair or precomputed 3D covariance!')
197
+
198
+ if shs is None:
199
+ shs = torch.Tensor([])
200
+ if colors_precomp is None:
201
+ colors_precomp = torch.Tensor([])
202
+
203
+ if scales is None:
204
+ scales = torch.Tensor([])
205
+ if rotations is None:
206
+ rotations = torch.Tensor([])
207
+ if cov3D_precomp is None:
208
+ cov3D_precomp = torch.Tensor([])
209
+
210
+ # Invoke C++/CUDA rasterization routine
211
+ return rasterize_gaussians(
212
+ means3D,
213
+ means2D,
214
+ shs,
215
+ colors_precomp,
216
+ opacities,
217
+ scales,
218
+ rotations,
219
+ cov3D_precomp,
220
+ raster_settings,
221
+ )
222
+
submodules/depth-diff-gaussian-rasterization-min/ext.cpp ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ * Copyright (C) 2023, Inria
3
+ * GRAPHDECO research group, https://team.inria.fr/graphdeco
4
+ * All rights reserved.
5
+ *
6
+ * This software is free for non-commercial, research and evaluation use
7
+ * under the terms of the LICENSE.md file.
8
+ *
9
+ * For inquiries contact george.drettakis@inria.fr
10
+ */
11
+
12
+ #include <torch/extension.h>
13
+ #include "rasterize_points.h"
14
+
15
+ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
16
+ m.def("rasterize_gaussians", &RasterizeGaussiansCUDA);
17
+ m.def("rasterize_gaussians_backward", &RasterizeGaussiansBackwardCUDA);
18
+ m.def("mark_visible", &markVisible);
19
+ }
submodules/depth-diff-gaussian-rasterization-min/rasterize_points.cu ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ * Copyright (C) 2023, Inria
3
+ * GRAPHDECO research group, https://team.inria.fr/graphdeco
4
+ * All rights reserved.
5
+ *
6
+ * This software is free for non-commercial, research and evaluation use
7
+ * under the terms of the LICENSE.md file.
8
+ *
9
+ * For inquiries contact george.drettakis@inria.fr
10
+ */
11
+
12
+ #include <math.h>
13
+ #include <torch/extension.h>
14
+ #include <cstdio>
15
+ #include <sstream>
16
+ #include <iostream>
17
+ #include <tuple>
18
+ #include <stdio.h>
19
+ #include <cuda_runtime_api.h>
20
+ #include <memory>
21
+ #include "cuda_rasterizer/config.h"
22
+ #include "cuda_rasterizer/rasterizer.h"
23
+ #include <fstream>
24
+ #include <string>
25
+ #include <functional>
26
+
27
+ std::function<char*(size_t N)> resizeFunctional(torch::Tensor& t) {
28
+ auto lambda = [&t](size_t N) {
29
+ t.resize_({(long long)N});
30
+ return reinterpret_cast<char*>(t.contiguous().data_ptr());
31
+ };
32
+ return lambda;
33
+ }
34
+
35
+ std::tuple<int, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor>
36
+ RasterizeGaussiansCUDA(
37
+ const torch::Tensor& background,
38
+ const torch::Tensor& means3D,
39
+ const torch::Tensor& colors,
40
+ const torch::Tensor& opacity,
41
+ const torch::Tensor& scales,
42
+ const torch::Tensor& rotations,
43
+ const float scale_modifier,
44
+ const torch::Tensor& cov3D_precomp,
45
+ const torch::Tensor& viewmatrix,
46
+ const torch::Tensor& projmatrix,
47
+ const float tan_fovx,
48
+ const float tan_fovy,
49
+ const int image_height,
50
+ const int image_width,
51
+ const torch::Tensor& sh,
52
+ const int degree,
53
+ const torch::Tensor& campos,
54
+ const bool prefiltered,
55
+ const bool debug)
56
+ {
57
+ if (means3D.ndimension() != 2 || means3D.size(1) != 3) {
58
+ AT_ERROR("means3D must have dimensions (num_points, 3)");
59
+ }
60
+
61
+ const int P = means3D.size(0);
62
+ const int H = image_height;
63
+ const int W = image_width;
64
+
65
+ auto int_opts = means3D.options().dtype(torch::kInt32);
66
+ auto float_opts = means3D.options().dtype(torch::kFloat32);
67
+
68
+ torch::Tensor out_color = torch::full({NUM_CHANNELS, H, W}, 0.0, float_opts);
69
+ torch::Tensor out_depth = torch::full({1, H, W}, 0.0, float_opts);
70
+ torch::Tensor radii = torch::full({P}, 0, means3D.options().dtype(torch::kInt32));
71
+
72
+ torch::Device device(torch::kCUDA);
73
+ torch::TensorOptions options(torch::kByte);
74
+ torch::Tensor geomBuffer = torch::empty({0}, options.device(device));
75
+ torch::Tensor binningBuffer = torch::empty({0}, options.device(device));
76
+ torch::Tensor imgBuffer = torch::empty({0}, options.device(device));
77
+ std::function<char*(size_t)> geomFunc = resizeFunctional(geomBuffer);
78
+ std::function<char*(size_t)> binningFunc = resizeFunctional(binningBuffer);
79
+ std::function<char*(size_t)> imgFunc = resizeFunctional(imgBuffer);
80
+
81
+ int rendered = 0;
82
+ if(P != 0)
83
+ {
84
+ int M = 0;
85
+ if(sh.size(0) != 0)
86
+ {
87
+ M = sh.size(1);
88
+ }
89
+
90
+ rendered = CudaRasterizer::Rasterizer::forward(
91
+ geomFunc,
92
+ binningFunc,
93
+ imgFunc,
94
+ P, degree, M,
95
+ background.contiguous().data<float>(),
96
+ W, H,
97
+ means3D.contiguous().data<float>(),
98
+ sh.contiguous().data_ptr<float>(),
99
+ colors.contiguous().data<float>(),
100
+ opacity.contiguous().data<float>(),
101
+ scales.contiguous().data_ptr<float>(),
102
+ scale_modifier,
103
+ rotations.contiguous().data_ptr<float>(),
104
+ cov3D_precomp.contiguous().data<float>(),
105
+ viewmatrix.contiguous().data<float>(),
106
+ projmatrix.contiguous().data<float>(),
107
+ campos.contiguous().data<float>(),
108
+ tan_fovx,
109
+ tan_fovy,
110
+ prefiltered,
111
+ out_color.contiguous().data<float>(),
112
+ out_depth.contiguous().data<float>(),
113
+ radii.contiguous().data<int>(),
114
+ debug);
115
+ }
116
+ return std::make_tuple(rendered, out_color, out_depth, radii, geomBuffer, binningBuffer, imgBuffer);
117
+ }
118
+
119
+ std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor>
120
+ RasterizeGaussiansBackwardCUDA(
121
+ const torch::Tensor& background,
122
+ const torch::Tensor& means3D,
123
+ const torch::Tensor& radii,
124
+ const torch::Tensor& colors,
125
+ const torch::Tensor& scales,
126
+ const torch::Tensor& rotations,
127
+ const float scale_modifier,
128
+ const torch::Tensor& cov3D_precomp,
129
+ const torch::Tensor& viewmatrix,
130
+ const torch::Tensor& projmatrix,
131
+ const float tan_fovx,
132
+ const float tan_fovy,
133
+ const torch::Tensor& dL_dout_color,
134
+ const torch::Tensor& dL_dout_depth,
135
+ const torch::Tensor& sh,
136
+ const int degree,
137
+ const torch::Tensor& campos,
138
+ const torch::Tensor& geomBuffer,
139
+ const int R,
140
+ const torch::Tensor& binningBuffer,
141
+ const torch::Tensor& imageBuffer,
142
+ const bool debug)
143
+ {
144
+ const int P = means3D.size(0);
145
+ const int H = dL_dout_color.size(1);
146
+ const int W = dL_dout_color.size(2);
147
+
148
+ int M = 0;
149
+ if(sh.size(0) != 0)
150
+ {
151
+ M = sh.size(1);
152
+ }
153
+
154
+ torch::Tensor dL_dmeans3D = torch::zeros({P, 3}, means3D.options());
155
+ torch::Tensor dL_dmeans2D = torch::zeros({P, 3}, means3D.options());
156
+ torch::Tensor dL_dcolors = torch::zeros({P, NUM_CHANNELS}, means3D.options());
157
+ torch::Tensor dL_dconic = torch::zeros({P, 2, 2}, means3D.options());
158
+ torch::Tensor dL_dopacity = torch::zeros({P, 1}, means3D.options());
159
+ torch::Tensor dL_dcov3D = torch::zeros({P, 6}, means3D.options());
160
+ torch::Tensor dL_dsh = torch::zeros({P, M, 3}, means3D.options());
161
+ torch::Tensor dL_dscales = torch::zeros({P, 3}, means3D.options());
162
+ torch::Tensor dL_drotations = torch::zeros({P, 4}, means3D.options());
163
+
164
+ if(P != 0)
165
+ {
166
+ CudaRasterizer::Rasterizer::backward(P, degree, M, R,
167
+ background.contiguous().data<float>(),
168
+ W, H,
169
+ means3D.contiguous().data<float>(),
170
+ sh.contiguous().data<float>(),
171
+ colors.contiguous().data<float>(),
172
+ scales.data_ptr<float>(),
173
+ scale_modifier,
174
+ rotations.data_ptr<float>(),
175
+ cov3D_precomp.contiguous().data<float>(),
176
+ viewmatrix.contiguous().data<float>(),
177
+ projmatrix.contiguous().data<float>(),
178
+ campos.contiguous().data<float>(),
179
+ tan_fovx,
180
+ tan_fovy,
181
+ radii.contiguous().data<int>(),
182
+ reinterpret_cast<char*>(geomBuffer.contiguous().data_ptr()),
183
+ reinterpret_cast<char*>(binningBuffer.contiguous().data_ptr()),
184
+ reinterpret_cast<char*>(imageBuffer.contiguous().data_ptr()),
185
+ dL_dout_color.contiguous().data<float>(),
186
+ dL_dout_depth.contiguous().data<float>(),
187
+ dL_dmeans2D.contiguous().data<float>(),
188
+ dL_dconic.contiguous().data<float>(),
189
+ dL_dopacity.contiguous().data<float>(),
190
+ dL_dcolors.contiguous().data<float>(),
191
+ dL_dmeans3D.contiguous().data<float>(),
192
+ dL_dcov3D.contiguous().data<float>(),
193
+ dL_dsh.contiguous().data<float>(),
194
+ dL_dscales.contiguous().data<float>(),
195
+ dL_drotations.contiguous().data<float>(),
196
+ debug);
197
+ }
198
+
199
+ return std::make_tuple(dL_dmeans2D, dL_dcolors, dL_dopacity, dL_dmeans3D, dL_dcov3D, dL_dsh, dL_dscales, dL_drotations);
200
+ }
201
+
202
+ torch::Tensor markVisible(
203
+ torch::Tensor& means3D,
204
+ torch::Tensor& viewmatrix,
205
+ torch::Tensor& projmatrix)
206
+ {
207
+ const int P = means3D.size(0);
208
+
209
+ torch::Tensor present = torch::full({P}, false, means3D.options().dtype(at::kBool));
210
+
211
+ if(P != 0)
212
+ {
213
+ CudaRasterizer::Rasterizer::markVisible(P,
214
+ means3D.contiguous().data<float>(),
215
+ viewmatrix.contiguous().data<float>(),
216
+ projmatrix.contiguous().data<float>(),
217
+ present.contiguous().data<bool>());
218
+ }
219
+
220
+ return present;
221
+ }
submodules/depth-diff-gaussian-rasterization-min/rasterize_points.h ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ * Copyright (C) 2023, Inria
3
+ * GRAPHDECO research group, https://team.inria.fr/graphdeco
4
+ * All rights reserved.
5
+ *
6
+ * This software is free for non-commercial, research and evaluation use
7
+ * under the terms of the LICENSE.md file.
8
+ *
9
+ * For inquiries contact george.drettakis@inria.fr
10
+ */
11
+
12
+ #pragma once
13
+ #include <torch/extension.h>
14
+ #include <cstdio>
15
+ #include <tuple>
16
+ #include <string>
17
+
18
+ std::tuple<int, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor>
19
+ RasterizeGaussiansCUDA(
20
+ const torch::Tensor& background,
21
+ const torch::Tensor& means3D,
22
+ const torch::Tensor& colors,
23
+ const torch::Tensor& opacity,
24
+ const torch::Tensor& scales,
25
+ const torch::Tensor& rotations,
26
+ const float scale_modifier,
27
+ const torch::Tensor& cov3D_precomp,
28
+ const torch::Tensor& viewmatrix,
29
+ const torch::Tensor& projmatrix,
30
+ const float tan_fovx,
31
+ const float tan_fovy,
32
+ const int image_height,
33
+ const int image_width,
34
+ const torch::Tensor& sh,
35
+ const int degree,
36
+ const torch::Tensor& campos,
37
+ const bool prefiltered,
38
+ const bool debug);
39
+
40
+ std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor>
41
+ RasterizeGaussiansBackwardCUDA(
42
+ const torch::Tensor& background,
43
+ const torch::Tensor& means3D,
44
+ const torch::Tensor& radii,
45
+ const torch::Tensor& colors,
46
+ const torch::Tensor& scales,
47
+ const torch::Tensor& rotations,
48
+ const float scale_modifier,
49
+ const torch::Tensor& cov3D_precomp,
50
+ const torch::Tensor& viewmatrix,
51
+ const torch::Tensor& projmatrix,
52
+ const float tan_fovx,
53
+ const float tan_fovy,
54
+ const torch::Tensor& dL_dout_color,
55
+ const torch::Tensor& dL_dout_depth,
56
+ const torch::Tensor& sh,
57
+ const int degree,
58
+ const torch::Tensor& campos,
59
+ const torch::Tensor& geomBuffer,
60
+ const int R,
61
+ const torch::Tensor& binningBuffer,
62
+ const torch::Tensor& imageBuffer,
63
+ const bool debug);
64
+
65
+ torch::Tensor markVisible(
66
+ torch::Tensor& means3D,
67
+ torch::Tensor& viewmatrix,
68
+ torch::Tensor& projmatrix);
submodules/depth-diff-gaussian-rasterization-min/setup.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright (C) 2023, Inria
3
+ # GRAPHDECO research group, https://team.inria.fr/graphdeco
4
+ # All rights reserved.
5
+ #
6
+ # This software is free for non-commercial, research and evaluation use
7
+ # under the terms of the LICENSE.md file.
8
+ #
9
+ # For inquiries contact george.drettakis@inria.fr
10
+ #
11
+
12
+ from setuptools import setup
13
+ from torch.utils.cpp_extension import CUDAExtension, BuildExtension
14
+ import os
15
+ os.path.dirname(os.path.abspath(__file__))
16
+
17
+ setup(
18
+ name="depth_diff_gaussian_rasterization_min",
19
+ packages=['depth_diff_gaussian_rasterization_min'],
20
+ ext_modules=[
21
+ CUDAExtension(
22
+ name="depth_diff_gaussian_rasterization_min._C",
23
+ sources=[
24
+ "cuda_rasterizer/rasterizer_impl.cu",
25
+ "cuda_rasterizer/forward.cu",
26
+ "cuda_rasterizer/backward.cu",
27
+ "rasterize_points.cu",
28
+ "ext.cpp"],
29
+ extra_compile_args={"nvcc": ["-I" + os.path.join(os.path.dirname(os.path.abspath(__file__)), "third_party/glm/")]})
30
+ ],
31
+ cmdclass={
32
+ 'build_ext': BuildExtension
33
+ }
34
+ )
submodules/depth-diff-gaussian-rasterization-min/third_party/stbi_image_write.h ADDED
@@ -0,0 +1,1724 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /* stb_image_write - v1.16 - public domain - http://nothings.org/stb
2
+ writes out PNG/BMP/TGA/JPEG/HDR images to C stdio - Sean Barrett 2010-2015
3
+ no warranty implied; use at your own risk
4
+
5
+ Before #including,
6
+
7
+ #define STB_IMAGE_WRITE_IMPLEMENTATION
8
+
9
+ in the file that you want to have the implementation.
10
+
11
+ Will probably not work correctly with strict-aliasing optimizations.
12
+
13
+ ABOUT:
14
+
15
+ This header file is a library for writing images to C stdio or a callback.
16
+
17
+ The PNG output is not optimal; it is 20-50% larger than the file
18
+ written by a decent optimizing implementation; though providing a custom
19
+ zlib compress function (see STBIW_ZLIB_COMPRESS) can mitigate that.
20
+ This library is designed for source code compactness and simplicity,
21
+ not optimal image file size or run-time performance.
22
+
23
+ BUILDING:
24
+
25
+ You can #define STBIW_ASSERT(x) before the #include to avoid using assert.h.
26
+ You can #define STBIW_MALLOC(), STBIW_REALLOC(), and STBIW_FREE() to replace
27
+ malloc,realloc,free.
28
+ You can #define STBIW_MEMMOVE() to replace memmove()
29
+ You can #define STBIW_ZLIB_COMPRESS to use a custom zlib-style compress function
30
+ for PNG compression (instead of the builtin one), it must have the following signature:
31
+ unsigned char * my_compress(unsigned char *data, int data_len, int *out_len, int quality);
32
+ The returned data will be freed with STBIW_FREE() (free() by default),
33
+ so it must be heap allocated with STBIW_MALLOC() (malloc() by default),
34
+
35
+ UNICODE:
36
+
37
+ If compiling for Windows and you wish to use Unicode filenames, compile
38
+ with
39
+ #define STBIW_WINDOWS_UTF8
40
+ and pass utf8-encoded filenames. Call stbiw_convert_wchar_to_utf8 to convert
41
+ Windows wchar_t filenames to utf8.
42
+
43
+ USAGE:
44
+
45
+ There are five functions, one for each image file format:
46
+
47
+ int stbi_write_png(char const *filename, int w, int h, int comp, const void *data, int stride_in_bytes);
48
+ int stbi_write_bmp(char const *filename, int w, int h, int comp, const void *data);
49
+ int stbi_write_tga(char const *filename, int w, int h, int comp, const void *data);
50
+ int stbi_write_jpg(char const *filename, int w, int h, int comp, const void *data, int quality);
51
+ int stbi_write_hdr(char const *filename, int w, int h, int comp, const float *data);
52
+
53
+ void stbi_flip_vertically_on_write(int flag); // flag is non-zero to flip data vertically
54
+
55
+ There are also five equivalent functions that use an arbitrary write function. You are
56
+ expected to open/close your file-equivalent before and after calling these:
57
+
58
+ int stbi_write_png_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data, int stride_in_bytes);
59
+ int stbi_write_bmp_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data);
60
+ int stbi_write_tga_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data);
61
+ int stbi_write_hdr_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const float *data);
62
+ int stbi_write_jpg_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data, int quality);
63
+
64
+ where the callback is:
65
+ void stbi_write_func(void *context, void *data, int size);
66
+
67
+ You can configure it with these global variables:
68
+ int stbi_write_tga_with_rle; // defaults to true; set to 0 to disable RLE
69
+ int stbi_write_png_compression_level; // defaults to 8; set to higher for more compression
70
+ int stbi_write_force_png_filter; // defaults to -1; set to 0..5 to force a filter mode
71
+
72
+
73
+ You can define STBI_WRITE_NO_STDIO to disable the file variant of these
74
+ functions, so the library will not use stdio.h at all. However, this will
75
+ also disable HDR writing, because it requires stdio for formatted output.
76
+
77
+ Each function returns 0 on failure and non-0 on success.
78
+
79
+ The functions create an image file defined by the parameters. The image
80
+ is a rectangle of pixels stored from left-to-right, top-to-bottom.
81
+ Each pixel contains 'comp' channels of data stored interleaved with 8-bits
82
+ per channel, in the following order: 1=Y, 2=YA, 3=RGB, 4=RGBA. (Y is
83
+ monochrome color.) The rectangle is 'w' pixels wide and 'h' pixels tall.
84
+ The *data pointer points to the first byte of the top-left-most pixel.
85
+ For PNG, "stride_in_bytes" is the distance in bytes from the first byte of
86
+ a row of pixels to the first byte of the next row of pixels.
87
+
88
+ PNG creates output files with the same number of components as the input.
89
+ The BMP format expands Y to RGB in the file format and does not
90
+ output alpha.
91
+
92
+ PNG supports writing rectangles of data even when the bytes storing rows of
93
+ data are not consecutive in memory (e.g. sub-rectangles of a larger image),
94
+ by supplying the stride between the beginning of adjacent rows. The other
95
+ formats do not. (Thus you cannot write a native-format BMP through the BMP
96
+ writer, both because it is in BGR order and because it may have padding
97
+ at the end of the line.)
98
+
99
+ PNG allows you to set the deflate compression level by setting the global
100
+ variable 'stbi_write_png_compression_level' (it defaults to 8).
101
+
102
+ HDR expects linear float data. Since the format is always 32-bit rgb(e)
103
+ data, alpha (if provided) is discarded, and for monochrome data it is
104
+ replicated across all three channels.
105
+
106
+ TGA supports RLE or non-RLE compressed data. To use non-RLE-compressed
107
+ data, set the global variable 'stbi_write_tga_with_rle' to 0.
108
+
109
+ JPEG does ignore alpha channels in input data; quality is between 1 and 100.
110
+ Higher quality looks better but results in a bigger image.
111
+ JPEG baseline (no JPEG progressive).
112
+
113
+ CREDITS:
114
+
115
+
116
+ Sean Barrett - PNG/BMP/TGA
117
+ Baldur Karlsson - HDR
118
+ Jean-Sebastien Guay - TGA monochrome
119
+ Tim Kelsey - misc enhancements
120
+ Alan Hickman - TGA RLE
121
+ Emmanuel Julien - initial file IO callback implementation
122
+ Jon Olick - original jo_jpeg.cpp code
123
+ Daniel Gibson - integrate JPEG, allow external zlib
124
+ Aarni Koskela - allow choosing PNG filter
125
+
126
+ bugfixes:
127
+ github:Chribba
128
+ Guillaume Chereau
129
+ github:jry2
130
+ github:romigrou
131
+ Sergio Gonzalez
132
+ Jonas Karlsson
133
+ Filip Wasil
134
+ Thatcher Ulrich
135
+ github:poppolopoppo
136
+ Patrick Boettcher
137
+ github:xeekworx
138
+ Cap Petschulat
139
+ Simon Rodriguez
140
+ Ivan Tikhonov
141
+ github:ignotion
142
+ Adam Schackart
143
+ Andrew Kensler
144
+
145
+ LICENSE
146
+
147
+ See end of file for license information.
148
+
149
+ */
150
+
151
+ #ifndef INCLUDE_STB_IMAGE_WRITE_H
152
+ #define INCLUDE_STB_IMAGE_WRITE_H
153
+
154
+ #include <stdlib.h>
155
+
156
+ // if STB_IMAGE_WRITE_STATIC causes problems, try defining STBIWDEF to 'inline' or 'static inline'
157
+ #ifndef STBIWDEF
158
+ #ifdef STB_IMAGE_WRITE_STATIC
159
+ #define STBIWDEF static
160
+ #else
161
+ #ifdef __cplusplus
162
+ #define STBIWDEF extern "C"
163
+ #else
164
+ #define STBIWDEF extern
165
+ #endif
166
+ #endif
167
+ #endif
168
+
169
+ #ifndef STB_IMAGE_WRITE_STATIC // C++ forbids static forward declarations
170
+ STBIWDEF int stbi_write_tga_with_rle;
171
+ STBIWDEF int stbi_write_png_compression_level;
172
+ STBIWDEF int stbi_write_force_png_filter;
173
+ #endif
174
+
175
+ #ifndef STBI_WRITE_NO_STDIO
176
+ STBIWDEF int stbi_write_png(char const *filename, int w, int h, int comp, const void *data, int stride_in_bytes);
177
+ STBIWDEF int stbi_write_bmp(char const *filename, int w, int h, int comp, const void *data);
178
+ STBIWDEF int stbi_write_tga(char const *filename, int w, int h, int comp, const void *data);
179
+ STBIWDEF int stbi_write_hdr(char const *filename, int w, int h, int comp, const float *data);
180
+ STBIWDEF int stbi_write_jpg(char const *filename, int x, int y, int comp, const void *data, int quality);
181
+
182
+ #ifdef STBIW_WINDOWS_UTF8
183
+ STBIWDEF int stbiw_convert_wchar_to_utf8(char *buffer, size_t bufferlen, const wchar_t* input);
184
+ #endif
185
+ #endif
186
+
187
+ typedef void stbi_write_func(void *context, void *data, int size);
188
+
189
+ STBIWDEF int stbi_write_png_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data, int stride_in_bytes);
190
+ STBIWDEF int stbi_write_bmp_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data);
191
+ STBIWDEF int stbi_write_tga_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data);
192
+ STBIWDEF int stbi_write_hdr_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const float *data);
193
+ STBIWDEF int stbi_write_jpg_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data, int quality);
194
+
195
+ STBIWDEF void stbi_flip_vertically_on_write(int flip_boolean);
196
+
197
+ #endif//INCLUDE_STB_IMAGE_WRITE_H
198
+
199
+ #ifdef STB_IMAGE_WRITE_IMPLEMENTATION
200
+
201
+ #ifdef _WIN32
202
+ #ifndef _CRT_SECURE_NO_WARNINGS
203
+ #define _CRT_SECURE_NO_WARNINGS
204
+ #endif
205
+ #ifndef _CRT_NONSTDC_NO_DEPRECATE
206
+ #define _CRT_NONSTDC_NO_DEPRECATE
207
+ #endif
208
+ #endif
209
+
210
+ #ifndef STBI_WRITE_NO_STDIO
211
+ #include <stdio.h>
212
+ #endif // STBI_WRITE_NO_STDIO
213
+
214
+ #include <stdarg.h>
215
+ #include <stdlib.h>
216
+ #include <string.h>
217
+ #include <math.h>
218
+
219
+ #if defined(STBIW_MALLOC) && defined(STBIW_FREE) && (defined(STBIW_REALLOC) || defined(STBIW_REALLOC_SIZED))
220
+ // ok
221
+ #elif !defined(STBIW_MALLOC) && !defined(STBIW_FREE) && !defined(STBIW_REALLOC) && !defined(STBIW_REALLOC_SIZED)
222
+ // ok
223
+ #else
224
+ #error "Must define all or none of STBIW_MALLOC, STBIW_FREE, and STBIW_REALLOC (or STBIW_REALLOC_SIZED)."
225
+ #endif
226
+
227
+ #ifndef STBIW_MALLOC
228
+ #define STBIW_MALLOC(sz) malloc(sz)
229
+ #define STBIW_REALLOC(p,newsz) realloc(p,newsz)
230
+ #define STBIW_FREE(p) free(p)
231
+ #endif
232
+
233
+ #ifndef STBIW_REALLOC_SIZED
234
+ #define STBIW_REALLOC_SIZED(p,oldsz,newsz) STBIW_REALLOC(p,newsz)
235
+ #endif
236
+
237
+
238
+ #ifndef STBIW_MEMMOVE
239
+ #define STBIW_MEMMOVE(a,b,sz) memmove(a,b,sz)
240
+ #endif
241
+
242
+
243
+ #ifndef STBIW_ASSERT
244
+ #include <assert.h>
245
+ #define STBIW_ASSERT(x) assert(x)
246
+ #endif
247
+
248
+ #define STBIW_UCHAR(x) (unsigned char) ((x) & 0xff)
249
+
250
+ #ifdef STB_IMAGE_WRITE_STATIC
251
+ static int stbi_write_png_compression_level = 8;
252
+ static int stbi_write_tga_with_rle = 1;
253
+ static int stbi_write_force_png_filter = -1;
254
+ #else
255
+ int stbi_write_png_compression_level = 8;
256
+ int stbi_write_tga_with_rle = 1;
257
+ int stbi_write_force_png_filter = -1;
258
+ #endif
259
+
260
+ static int stbi__flip_vertically_on_write = 0;
261
+
262
+ STBIWDEF void stbi_flip_vertically_on_write(int flag)
263
+ {
264
+ stbi__flip_vertically_on_write = flag;
265
+ }
266
+
267
+ typedef struct
268
+ {
269
+ stbi_write_func *func;
270
+ void *context;
271
+ unsigned char buffer[64];
272
+ int buf_used;
273
+ } stbi__write_context;
274
+
275
+ // initialize a callback-based context
276
+ static void stbi__start_write_callbacks(stbi__write_context *s, stbi_write_func *c, void *context)
277
+ {
278
+ s->func = c;
279
+ s->context = context;
280
+ }
281
+
282
+ #ifndef STBI_WRITE_NO_STDIO
283
+
284
+ static void stbi__stdio_write(void *context, void *data, int size)
285
+ {
286
+ fwrite(data,1,size,(FILE*) context);
287
+ }
288
+
289
+ #if defined(_WIN32) && defined(STBIW_WINDOWS_UTF8)
290
+ #ifdef __cplusplus
291
+ #define STBIW_EXTERN extern "C"
292
+ #else
293
+ #define STBIW_EXTERN extern
294
+ #endif
295
+ STBIW_EXTERN __declspec(dllimport) int __stdcall MultiByteToWideChar(unsigned int cp, unsigned long flags, const char *str, int cbmb, wchar_t *widestr, int cchwide);
296
+ STBIW_EXTERN __declspec(dllimport) int __stdcall WideCharToMultiByte(unsigned int cp, unsigned long flags, const wchar_t *widestr, int cchwide, char *str, int cbmb, const char *defchar, int *used_default);
297
+
298
+ STBIWDEF int stbiw_convert_wchar_to_utf8(char *buffer, size_t bufferlen, const wchar_t* input)
299
+ {
300
+ return WideCharToMultiByte(65001 /* UTF8 */, 0, input, -1, buffer, (int) bufferlen, NULL, NULL);
301
+ }
302
+ #endif
303
+
304
+ static FILE *stbiw__fopen(char const *filename, char const *mode)
305
+ {
306
+ FILE *f;
307
+ #if defined(_WIN32) && defined(STBIW_WINDOWS_UTF8)
308
+ wchar_t wMode[64];
309
+ wchar_t wFilename[1024];
310
+ if (0 == MultiByteToWideChar(65001 /* UTF8 */, 0, filename, -1, wFilename, sizeof(wFilename)/sizeof(*wFilename)))
311
+ return 0;
312
+
313
+ if (0 == MultiByteToWideChar(65001 /* UTF8 */, 0, mode, -1, wMode, sizeof(wMode)/sizeof(*wMode)))
314
+ return 0;
315
+
316
+ #if defined(_MSC_VER) && _MSC_VER >= 1400
317
+ if (0 != _wfopen_s(&f, wFilename, wMode))
318
+ f = 0;
319
+ #else
320
+ f = _wfopen(wFilename, wMode);
321
+ #endif
322
+
323
+ #elif defined(_MSC_VER) && _MSC_VER >= 1400
324
+ if (0 != fopen_s(&f, filename, mode))
325
+ f=0;
326
+ #else
327
+ f = fopen(filename, mode);
328
+ #endif
329
+ return f;
330
+ }
331
+
332
+ static int stbi__start_write_file(stbi__write_context *s, const char *filename)
333
+ {
334
+ FILE *f = stbiw__fopen(filename, "wb");
335
+ stbi__start_write_callbacks(s, stbi__stdio_write, (void *) f);
336
+ return f != NULL;
337
+ }
338
+
339
+ static void stbi__end_write_file(stbi__write_context *s)
340
+ {
341
+ fclose((FILE *)s->context);
342
+ }
343
+
344
+ #endif // !STBI_WRITE_NO_STDIO
345
+
346
+ typedef unsigned int stbiw_uint32;
347
+ typedef int stb_image_write_test[sizeof(stbiw_uint32)==4 ? 1 : -1];
348
+
349
+ static void stbiw__writefv(stbi__write_context *s, const char *fmt, va_list v)
350
+ {
351
+ while (*fmt) {
352
+ switch (*fmt++) {
353
+ case ' ': break;
354
+ case '1': { unsigned char x = STBIW_UCHAR(va_arg(v, int));
355
+ s->func(s->context,&x,1);
356
+ break; }
357
+ case '2': { int x = va_arg(v,int);
358
+ unsigned char b[2];
359
+ b[0] = STBIW_UCHAR(x);
360
+ b[1] = STBIW_UCHAR(x>>8);
361
+ s->func(s->context,b,2);
362
+ break; }
363
+ case '4': { stbiw_uint32 x = va_arg(v,int);
364
+ unsigned char b[4];
365
+ b[0]=STBIW_UCHAR(x);
366
+ b[1]=STBIW_UCHAR(x>>8);
367
+ b[2]=STBIW_UCHAR(x>>16);
368
+ b[3]=STBIW_UCHAR(x>>24);
369
+ s->func(s->context,b,4);
370
+ break; }
371
+ default:
372
+ STBIW_ASSERT(0);
373
+ return;
374
+ }
375
+ }
376
+ }
377
+
378
+ static void stbiw__writef(stbi__write_context *s, const char *fmt, ...)
379
+ {
380
+ va_list v;
381
+ va_start(v, fmt);
382
+ stbiw__writefv(s, fmt, v);
383
+ va_end(v);
384
+ }
385
+
386
+ static void stbiw__write_flush(stbi__write_context *s)
387
+ {
388
+ if (s->buf_used) {
389
+ s->func(s->context, &s->buffer, s->buf_used);
390
+ s->buf_used = 0;
391
+ }
392
+ }
393
+
394
+ static void stbiw__putc(stbi__write_context *s, unsigned char c)
395
+ {
396
+ s->func(s->context, &c, 1);
397
+ }
398
+
399
+ static void stbiw__write1(stbi__write_context *s, unsigned char a)
400
+ {
401
+ if ((size_t)s->buf_used + 1 > sizeof(s->buffer))
402
+ stbiw__write_flush(s);
403
+ s->buffer[s->buf_used++] = a;
404
+ }
405
+
406
+ static void stbiw__write3(stbi__write_context *s, unsigned char a, unsigned char b, unsigned char c)
407
+ {
408
+ int n;
409
+ if ((size_t)s->buf_used + 3 > sizeof(s->buffer))
410
+ stbiw__write_flush(s);
411
+ n = s->buf_used;
412
+ s->buf_used = n+3;
413
+ s->buffer[n+0] = a;
414
+ s->buffer[n+1] = b;
415
+ s->buffer[n+2] = c;
416
+ }
417
+
418
+ static void stbiw__write_pixel(stbi__write_context *s, int rgb_dir, int comp, int write_alpha, int expand_mono, unsigned char *d)
419
+ {
420
+ unsigned char bg[3] = { 255, 0, 255}, px[3];
421
+ int k;
422
+
423
+ if (write_alpha < 0)
424
+ stbiw__write1(s, d[comp - 1]);
425
+
426
+ switch (comp) {
427
+ case 2: // 2 pixels = mono + alpha, alpha is written separately, so same as 1-channel case
428
+ case 1:
429
+ if (expand_mono)
430
+ stbiw__write3(s, d[0], d[0], d[0]); // monochrome bmp
431
+ else
432
+ stbiw__write1(s, d[0]); // monochrome TGA
433
+ break;
434
+ case 4:
435
+ if (!write_alpha) {
436
+ // composite against pink background
437
+ for (k = 0; k < 3; ++k)
438
+ px[k] = bg[k] + ((d[k] - bg[k]) * d[3]) / 255;
439
+ stbiw__write3(s, px[1 - rgb_dir], px[1], px[1 + rgb_dir]);
440
+ break;
441
+ }
442
+ /* FALLTHROUGH */
443
+ case 3:
444
+ stbiw__write3(s, d[1 - rgb_dir], d[1], d[1 + rgb_dir]);
445
+ break;
446
+ }
447
+ if (write_alpha > 0)
448
+ stbiw__write1(s, d[comp - 1]);
449
+ }
450
+
451
+ static void stbiw__write_pixels(stbi__write_context *s, int rgb_dir, int vdir, int x, int y, int comp, void *data, int write_alpha, int scanline_pad, int expand_mono)
452
+ {
453
+ stbiw_uint32 zero = 0;
454
+ int i,j, j_end;
455
+
456
+ if (y <= 0)
457
+ return;
458
+
459
+ if (stbi__flip_vertically_on_write)
460
+ vdir *= -1;
461
+
462
+ if (vdir < 0) {
463
+ j_end = -1; j = y-1;
464
+ } else {
465
+ j_end = y; j = 0;
466
+ }
467
+
468
+ for (; j != j_end; j += vdir) {
469
+ for (i=0; i < x; ++i) {
470
+ unsigned char *d = (unsigned char *) data + (j*x+i)*comp;
471
+ stbiw__write_pixel(s, rgb_dir, comp, write_alpha, expand_mono, d);
472
+ }
473
+ stbiw__write_flush(s);
474
+ s->func(s->context, &zero, scanline_pad);
475
+ }
476
+ }
477
+
478
+ static int stbiw__outfile(stbi__write_context *s, int rgb_dir, int vdir, int x, int y, int comp, int expand_mono, void *data, int alpha, int pad, const char *fmt, ...)
479
+ {
480
+ if (y < 0 || x < 0) {
481
+ return 0;
482
+ } else {
483
+ va_list v;
484
+ va_start(v, fmt);
485
+ stbiw__writefv(s, fmt, v);
486
+ va_end(v);
487
+ stbiw__write_pixels(s,rgb_dir,vdir,x,y,comp,data,alpha,pad, expand_mono);
488
+ return 1;
489
+ }
490
+ }
491
+
492
+ static int stbi_write_bmp_core(stbi__write_context *s, int x, int y, int comp, const void *data)
493
+ {
494
+ if (comp != 4) {
495
+ // write RGB bitmap
496
+ int pad = (-x*3) & 3;
497
+ return stbiw__outfile(s,-1,-1,x,y,comp,1,(void *) data,0,pad,
498
+ "11 4 22 4" "4 44 22 444444",
499
+ 'B', 'M', 14+40+(x*3+pad)*y, 0,0, 14+40, // file header
500
+ 40, x,y, 1,24, 0,0,0,0,0,0); // bitmap header
501
+ } else {
502
+ // RGBA bitmaps need a v4 header
503
+ // use BI_BITFIELDS mode with 32bpp and alpha mask
504
+ // (straight BI_RGB with alpha mask doesn't work in most readers)
505
+ return stbiw__outfile(s,-1,-1,x,y,comp,1,(void *)data,1,0,
506
+ "11 4 22 4" "4 44 22 444444 4444 4 444 444 444 444",
507
+ 'B', 'M', 14+108+x*y*4, 0, 0, 14+108, // file header
508
+ 108, x,y, 1,32, 3,0,0,0,0,0, 0xff0000,0xff00,0xff,0xff000000u, 0, 0,0,0, 0,0,0, 0,0,0, 0,0,0); // bitmap V4 header
509
+ }
510
+ }
511
+
512
+ STBIWDEF int stbi_write_bmp_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data)
513
+ {
514
+ stbi__write_context s = { 0 };
515
+ stbi__start_write_callbacks(&s, func, context);
516
+ return stbi_write_bmp_core(&s, x, y, comp, data);
517
+ }
518
+
519
+ #ifndef STBI_WRITE_NO_STDIO
520
+ STBIWDEF int stbi_write_bmp(char const *filename, int x, int y, int comp, const void *data)
521
+ {
522
+ stbi__write_context s = { 0 };
523
+ if (stbi__start_write_file(&s,filename)) {
524
+ int r = stbi_write_bmp_core(&s, x, y, comp, data);
525
+ stbi__end_write_file(&s);
526
+ return r;
527
+ } else
528
+ return 0;
529
+ }
530
+ #endif //!STBI_WRITE_NO_STDIO
531
+
532
+ static int stbi_write_tga_core(stbi__write_context *s, int x, int y, int comp, void *data)
533
+ {
534
+ int has_alpha = (comp == 2 || comp == 4);
535
+ int colorbytes = has_alpha ? comp-1 : comp;
536
+ int format = colorbytes < 2 ? 3 : 2; // 3 color channels (RGB/RGBA) = 2, 1 color channel (Y/YA) = 3
537
+
538
+ if (y < 0 || x < 0)
539
+ return 0;
540
+
541
+ if (!stbi_write_tga_with_rle) {
542
+ return stbiw__outfile(s, -1, -1, x, y, comp, 0, (void *) data, has_alpha, 0,
543
+ "111 221 2222 11", 0, 0, format, 0, 0, 0, 0, 0, x, y, (colorbytes + has_alpha) * 8, has_alpha * 8);
544
+ } else {
545
+ int i,j,k;
546
+ int jend, jdir;
547
+
548
+ stbiw__writef(s, "111 221 2222 11", 0,0,format+8, 0,0,0, 0,0,x,y, (colorbytes + has_alpha) * 8, has_alpha * 8);
549
+
550
+ if (stbi__flip_vertically_on_write) {
551
+ j = 0;
552
+ jend = y;
553
+ jdir = 1;
554
+ } else {
555
+ j = y-1;
556
+ jend = -1;
557
+ jdir = -1;
558
+ }
559
+ for (; j != jend; j += jdir) {
560
+ unsigned char *row = (unsigned char *) data + j * x * comp;
561
+ int len;
562
+
563
+ for (i = 0; i < x; i += len) {
564
+ unsigned char *begin = row + i * comp;
565
+ int diff = 1;
566
+ len = 1;
567
+
568
+ if (i < x - 1) {
569
+ ++len;
570
+ diff = memcmp(begin, row + (i + 1) * comp, comp);
571
+ if (diff) {
572
+ const unsigned char *prev = begin;
573
+ for (k = i + 2; k < x && len < 128; ++k) {
574
+ if (memcmp(prev, row + k * comp, comp)) {
575
+ prev += comp;
576
+ ++len;
577
+ } else {
578
+ --len;
579
+ break;
580
+ }
581
+ }
582
+ } else {
583
+ for (k = i + 2; k < x && len < 128; ++k) {
584
+ if (!memcmp(begin, row + k * comp, comp)) {
585
+ ++len;
586
+ } else {
587
+ break;
588
+ }
589
+ }
590
+ }
591
+ }
592
+
593
+ if (diff) {
594
+ unsigned char header = STBIW_UCHAR(len - 1);
595
+ stbiw__write1(s, header);
596
+ for (k = 0; k < len; ++k) {
597
+ stbiw__write_pixel(s, -1, comp, has_alpha, 0, begin + k * comp);
598
+ }
599
+ } else {
600
+ unsigned char header = STBIW_UCHAR(len - 129);
601
+ stbiw__write1(s, header);
602
+ stbiw__write_pixel(s, -1, comp, has_alpha, 0, begin);
603
+ }
604
+ }
605
+ }
606
+ stbiw__write_flush(s);
607
+ }
608
+ return 1;
609
+ }
610
+
611
+ STBIWDEF int stbi_write_tga_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data)
612
+ {
613
+ stbi__write_context s = { 0 };
614
+ stbi__start_write_callbacks(&s, func, context);
615
+ return stbi_write_tga_core(&s, x, y, comp, (void *) data);
616
+ }
617
+
618
+ #ifndef STBI_WRITE_NO_STDIO
619
+ STBIWDEF int stbi_write_tga(char const *filename, int x, int y, int comp, const void *data)
620
+ {
621
+ stbi__write_context s = { 0 };
622
+ if (stbi__start_write_file(&s,filename)) {
623
+ int r = stbi_write_tga_core(&s, x, y, comp, (void *) data);
624
+ stbi__end_write_file(&s);
625
+ return r;
626
+ } else
627
+ return 0;
628
+ }
629
+ #endif
630
+
631
+ // *************************************************************************************************
632
+ // Radiance RGBE HDR writer
633
+ // by Baldur Karlsson
634
+
635
+ #define stbiw__max(a, b) ((a) > (b) ? (a) : (b))
636
+
637
+ #ifndef STBI_WRITE_NO_STDIO
638
+
639
+ static void stbiw__linear_to_rgbe(unsigned char *rgbe, float *linear)
640
+ {
641
+ int exponent;
642
+ float maxcomp = stbiw__max(linear[0], stbiw__max(linear[1], linear[2]));
643
+
644
+ if (maxcomp < 1e-32f) {
645
+ rgbe[0] = rgbe[1] = rgbe[2] = rgbe[3] = 0;
646
+ } else {
647
+ float normalize = (float) frexp(maxcomp, &exponent) * 256.0f/maxcomp;
648
+
649
+ rgbe[0] = (unsigned char)(linear[0] * normalize);
650
+ rgbe[1] = (unsigned char)(linear[1] * normalize);
651
+ rgbe[2] = (unsigned char)(linear[2] * normalize);
652
+ rgbe[3] = (unsigned char)(exponent + 128);
653
+ }
654
+ }
655
+
656
+ static void stbiw__write_run_data(stbi__write_context *s, int length, unsigned char databyte)
657
+ {
658
+ unsigned char lengthbyte = STBIW_UCHAR(length+128);
659
+ STBIW_ASSERT(length+128 <= 255);
660
+ s->func(s->context, &lengthbyte, 1);
661
+ s->func(s->context, &databyte, 1);
662
+ }
663
+
664
+ static void stbiw__write_dump_data(stbi__write_context *s, int length, unsigned char *data)
665
+ {
666
+ unsigned char lengthbyte = STBIW_UCHAR(length);
667
+ STBIW_ASSERT(length <= 128); // inconsistent with spec but consistent with official code
668
+ s->func(s->context, &lengthbyte, 1);
669
+ s->func(s->context, data, length);
670
+ }
671
+
672
+ static void stbiw__write_hdr_scanline(stbi__write_context *s, int width, int ncomp, unsigned char *scratch, float *scanline)
673
+ {
674
+ unsigned char scanlineheader[4] = { 2, 2, 0, 0 };
675
+ unsigned char rgbe[4];
676
+ float linear[3];
677
+ int x;
678
+
679
+ scanlineheader[2] = (width&0xff00)>>8;
680
+ scanlineheader[3] = (width&0x00ff);
681
+
682
+ /* skip RLE for images too small or large */
683
+ if (width < 8 || width >= 32768) {
684
+ for (x=0; x < width; x++) {
685
+ switch (ncomp) {
686
+ case 4: /* fallthrough */
687
+ case 3: linear[2] = scanline[x*ncomp + 2];
688
+ linear[1] = scanline[x*ncomp + 1];
689
+ linear[0] = scanline[x*ncomp + 0];
690
+ break;
691
+ default:
692
+ linear[0] = linear[1] = linear[2] = scanline[x*ncomp + 0];
693
+ break;
694
+ }
695
+ stbiw__linear_to_rgbe(rgbe, linear);
696
+ s->func(s->context, rgbe, 4);
697
+ }
698
+ } else {
699
+ int c,r;
700
+ /* encode into scratch buffer */
701
+ for (x=0; x < width; x++) {
702
+ switch(ncomp) {
703
+ case 4: /* fallthrough */
704
+ case 3: linear[2] = scanline[x*ncomp + 2];
705
+ linear[1] = scanline[x*ncomp + 1];
706
+ linear[0] = scanline[x*ncomp + 0];
707
+ break;
708
+ default:
709
+ linear[0] = linear[1] = linear[2] = scanline[x*ncomp + 0];
710
+ break;
711
+ }
712
+ stbiw__linear_to_rgbe(rgbe, linear);
713
+ scratch[x + width*0] = rgbe[0];
714
+ scratch[x + width*1] = rgbe[1];
715
+ scratch[x + width*2] = rgbe[2];
716
+ scratch[x + width*3] = rgbe[3];
717
+ }
718
+
719
+ s->func(s->context, scanlineheader, 4);
720
+
721
+ /* RLE each component separately */
722
+ for (c=0; c < 4; c++) {
723
+ unsigned char *comp = &scratch[width*c];
724
+
725
+ x = 0;
726
+ while (x < width) {
727
+ // find first run
728
+ r = x;
729
+ while (r+2 < width) {
730
+ if (comp[r] == comp[r+1] && comp[r] == comp[r+2])
731
+ break;
732
+ ++r;
733
+ }
734
+ if (r+2 >= width)
735
+ r = width;
736
+ // dump up to first run
737
+ while (x < r) {
738
+ int len = r-x;
739
+ if (len > 128) len = 128;
740
+ stbiw__write_dump_data(s, len, &comp[x]);
741
+ x += len;
742
+ }
743
+ // if there's a run, output it
744
+ if (r+2 < width) { // same test as what we break out of in search loop, so only true if we break'd
745
+ // find next byte after run
746
+ while (r < width && comp[r] == comp[x])
747
+ ++r;
748
+ // output run up to r
749
+ while (x < r) {
750
+ int len = r-x;
751
+ if (len > 127) len = 127;
752
+ stbiw__write_run_data(s, len, comp[x]);
753
+ x += len;
754
+ }
755
+ }
756
+ }
757
+ }
758
+ }
759
+ }
760
+
761
+ static int stbi_write_hdr_core(stbi__write_context *s, int x, int y, int comp, float *data)
762
+ {
763
+ if (y <= 0 || x <= 0 || data == NULL)
764
+ return 0;
765
+ else {
766
+ // Each component is stored separately. Allocate scratch space for full output scanline.
767
+ unsigned char *scratch = (unsigned char *) STBIW_MALLOC(x*4);
768
+ int i, len;
769
+ char buffer[128];
770
+ char header[] = "#?RADIANCE\n# Written by stb_image_write.h\nFORMAT=32-bit_rle_rgbe\n";
771
+ s->func(s->context, header, sizeof(header)-1);
772
+
773
+ #ifdef __STDC_LIB_EXT1__
774
+ len = sprintf_s(buffer, sizeof(buffer), "EXPOSURE= 1.0000000000000\n\n-Y %d +X %d\n", y, x);
775
+ #else
776
+ len = sprintf(buffer, "EXPOSURE= 1.0000000000000\n\n-Y %d +X %d\n", y, x);
777
+ #endif
778
+ s->func(s->context, buffer, len);
779
+
780
+ for(i=0; i < y; i++)
781
+ stbiw__write_hdr_scanline(s, x, comp, scratch, data + comp*x*(stbi__flip_vertically_on_write ? y-1-i : i));
782
+ STBIW_FREE(scratch);
783
+ return 1;
784
+ }
785
+ }
786
+
787
+ STBIWDEF int stbi_write_hdr_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const float *data)
788
+ {
789
+ stbi__write_context s = { 0 };
790
+ stbi__start_write_callbacks(&s, func, context);
791
+ return stbi_write_hdr_core(&s, x, y, comp, (float *) data);
792
+ }
793
+
794
+ STBIWDEF int stbi_write_hdr(char const *filename, int x, int y, int comp, const float *data)
795
+ {
796
+ stbi__write_context s = { 0 };
797
+ if (stbi__start_write_file(&s,filename)) {
798
+ int r = stbi_write_hdr_core(&s, x, y, comp, (float *) data);
799
+ stbi__end_write_file(&s);
800
+ return r;
801
+ } else
802
+ return 0;
803
+ }
804
+ #endif // STBI_WRITE_NO_STDIO
805
+
806
+
807
+ //////////////////////////////////////////////////////////////////////////////
808
+ //
809
+ // PNG writer
810
+ //
811
+
812
+ #ifndef STBIW_ZLIB_COMPRESS
813
+ // stretchy buffer; stbiw__sbpush() == vector<>::push_back() -- stbiw__sbcount() == vector<>::size()
814
+ #define stbiw__sbraw(a) ((int *) (void *) (a) - 2)
815
+ #define stbiw__sbm(a) stbiw__sbraw(a)[0]
816
+ #define stbiw__sbn(a) stbiw__sbraw(a)[1]
817
+
818
+ #define stbiw__sbneedgrow(a,n) ((a)==0 || stbiw__sbn(a)+n >= stbiw__sbm(a))
819
+ #define stbiw__sbmaybegrow(a,n) (stbiw__sbneedgrow(a,(n)) ? stbiw__sbgrow(a,n) : 0)
820
+ #define stbiw__sbgrow(a,n) stbiw__sbgrowf((void **) &(a), (n), sizeof(*(a)))
821
+
822
+ #define stbiw__sbpush(a, v) (stbiw__sbmaybegrow(a,1), (a)[stbiw__sbn(a)++] = (v))
823
+ #define stbiw__sbcount(a) ((a) ? stbiw__sbn(a) : 0)
824
+ #define stbiw__sbfree(a) ((a) ? STBIW_FREE(stbiw__sbraw(a)),0 : 0)
825
+
826
+ static void *stbiw__sbgrowf(void **arr, int increment, int itemsize)
827
+ {
828
+ int m = *arr ? 2*stbiw__sbm(*arr)+increment : increment+1;
829
+ void *p = STBIW_REALLOC_SIZED(*arr ? stbiw__sbraw(*arr) : 0, *arr ? (stbiw__sbm(*arr)*itemsize + sizeof(int)*2) : 0, itemsize * m + sizeof(int)*2);
830
+ STBIW_ASSERT(p);
831
+ if (p) {
832
+ if (!*arr) ((int *) p)[1] = 0;
833
+ *arr = (void *) ((int *) p + 2);
834
+ stbiw__sbm(*arr) = m;
835
+ }
836
+ return *arr;
837
+ }
838
+
839
+ static unsigned char *stbiw__zlib_flushf(unsigned char *data, unsigned int *bitbuffer, int *bitcount)
840
+ {
841
+ while (*bitcount >= 8) {
842
+ stbiw__sbpush(data, STBIW_UCHAR(*bitbuffer));
843
+ *bitbuffer >>= 8;
844
+ *bitcount -= 8;
845
+ }
846
+ return data;
847
+ }
848
+
849
+ static int stbiw__zlib_bitrev(int code, int codebits)
850
+ {
851
+ int res=0;
852
+ while (codebits--) {
853
+ res = (res << 1) | (code & 1);
854
+ code >>= 1;
855
+ }
856
+ return res;
857
+ }
858
+
859
+ static unsigned int stbiw__zlib_countm(unsigned char *a, unsigned char *b, int limit)
860
+ {
861
+ int i;
862
+ for (i=0; i < limit && i < 258; ++i)
863
+ if (a[i] != b[i]) break;
864
+ return i;
865
+ }
866
+
867
+ static unsigned int stbiw__zhash(unsigned char *data)
868
+ {
869
+ stbiw_uint32 hash = data[0] + (data[1] << 8) + (data[2] << 16);
870
+ hash ^= hash << 3;
871
+ hash += hash >> 5;
872
+ hash ^= hash << 4;
873
+ hash += hash >> 17;
874
+ hash ^= hash << 25;
875
+ hash += hash >> 6;
876
+ return hash;
877
+ }
878
+
879
+ #define stbiw__zlib_flush() (out = stbiw__zlib_flushf(out, &bitbuf, &bitcount))
880
+ #define stbiw__zlib_add(code,codebits) \
881
+ (bitbuf |= (code) << bitcount, bitcount += (codebits), stbiw__zlib_flush())
882
+ #define stbiw__zlib_huffa(b,c) stbiw__zlib_add(stbiw__zlib_bitrev(b,c),c)
883
+ // default huffman tables
884
+ #define stbiw__zlib_huff1(n) stbiw__zlib_huffa(0x30 + (n), 8)
885
+ #define stbiw__zlib_huff2(n) stbiw__zlib_huffa(0x190 + (n)-144, 9)
886
+ #define stbiw__zlib_huff3(n) stbiw__zlib_huffa(0 + (n)-256,7)
887
+ #define stbiw__zlib_huff4(n) stbiw__zlib_huffa(0xc0 + (n)-280,8)
888
+ #define stbiw__zlib_huff(n) ((n) <= 143 ? stbiw__zlib_huff1(n) : (n) <= 255 ? stbiw__zlib_huff2(n) : (n) <= 279 ? stbiw__zlib_huff3(n) : stbiw__zlib_huff4(n))
889
+ #define stbiw__zlib_huffb(n) ((n) <= 143 ? stbiw__zlib_huff1(n) : stbiw__zlib_huff2(n))
890
+
891
+ #define stbiw__ZHASH 16384
892
+
893
+ #endif // STBIW_ZLIB_COMPRESS
894
+
895
+ STBIWDEF unsigned char * stbi_zlib_compress(unsigned char *data, int data_len, int *out_len, int quality)
896
+ {
897
+ #ifdef STBIW_ZLIB_COMPRESS
898
+ // user provided a zlib compress implementation, use that
899
+ return STBIW_ZLIB_COMPRESS(data, data_len, out_len, quality);
900
+ #else // use builtin
901
+ static unsigned short lengthc[] = { 3,4,5,6,7,8,9,10,11,13,15,17,19,23,27,31,35,43,51,59,67,83,99,115,131,163,195,227,258, 259 };
902
+ static unsigned char lengtheb[]= { 0,0,0,0,0,0,0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0 };
903
+ static unsigned short distc[] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193,257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577, 32768 };
904
+ static unsigned char disteb[] = { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13 };
905
+ unsigned int bitbuf=0;
906
+ int i,j, bitcount=0;
907
+ unsigned char *out = NULL;
908
+ unsigned char ***hash_table = (unsigned char***) STBIW_MALLOC(stbiw__ZHASH * sizeof(unsigned char**));
909
+ if (hash_table == NULL)
910
+ return NULL;
911
+ if (quality < 5) quality = 5;
912
+
913
+ stbiw__sbpush(out, 0x78); // DEFLATE 32K window
914
+ stbiw__sbpush(out, 0x5e); // FLEVEL = 1
915
+ stbiw__zlib_add(1,1); // BFINAL = 1
916
+ stbiw__zlib_add(1,2); // BTYPE = 1 -- fixed huffman
917
+
918
+ for (i=0; i < stbiw__ZHASH; ++i)
919
+ hash_table[i] = NULL;
920
+
921
+ i=0;
922
+ while (i < data_len-3) {
923
+ // hash next 3 bytes of data to be compressed
924
+ int h = stbiw__zhash(data+i)&(stbiw__ZHASH-1), best=3;
925
+ unsigned char *bestloc = 0;
926
+ unsigned char **hlist = hash_table[h];
927
+ int n = stbiw__sbcount(hlist);
928
+ for (j=0; j < n; ++j) {
929
+ if (hlist[j]-data > i-32768) { // if entry lies within window
930
+ int d = stbiw__zlib_countm(hlist[j], data+i, data_len-i);
931
+ if (d >= best) { best=d; bestloc=hlist[j]; }
932
+ }
933
+ }
934
+ // when hash table entry is too long, delete half the entries
935
+ if (hash_table[h] && stbiw__sbn(hash_table[h]) == 2*quality) {
936
+ STBIW_MEMMOVE(hash_table[h], hash_table[h]+quality, sizeof(hash_table[h][0])*quality);
937
+ stbiw__sbn(hash_table[h]) = quality;
938
+ }
939
+ stbiw__sbpush(hash_table[h],data+i);
940
+
941
+ if (bestloc) {
942
+ // "lazy matching" - check match at *next* byte, and if it's better, do cur byte as literal
943
+ h = stbiw__zhash(data+i+1)&(stbiw__ZHASH-1);
944
+ hlist = hash_table[h];
945
+ n = stbiw__sbcount(hlist);
946
+ for (j=0; j < n; ++j) {
947
+ if (hlist[j]-data > i-32767) {
948
+ int e = stbiw__zlib_countm(hlist[j], data+i+1, data_len-i-1);
949
+ if (e > best) { // if next match is better, bail on current match
950
+ bestloc = NULL;
951
+ break;
952
+ }
953
+ }
954
+ }
955
+ }
956
+
957
+ if (bestloc) {
958
+ int d = (int) (data+i - bestloc); // distance back
959
+ STBIW_ASSERT(d <= 32767 && best <= 258);
960
+ for (j=0; best > lengthc[j+1]-1; ++j);
961
+ stbiw__zlib_huff(j+257);
962
+ if (lengtheb[j]) stbiw__zlib_add(best - lengthc[j], lengtheb[j]);
963
+ for (j=0; d > distc[j+1]-1; ++j);
964
+ stbiw__zlib_add(stbiw__zlib_bitrev(j,5),5);
965
+ if (disteb[j]) stbiw__zlib_add(d - distc[j], disteb[j]);
966
+ i += best;
967
+ } else {
968
+ stbiw__zlib_huffb(data[i]);
969
+ ++i;
970
+ }
971
+ }
972
+ // write out final bytes
973
+ for (;i < data_len; ++i)
974
+ stbiw__zlib_huffb(data[i]);
975
+ stbiw__zlib_huff(256); // end of block
976
+ // pad with 0 bits to byte boundary
977
+ while (bitcount)
978
+ stbiw__zlib_add(0,1);
979
+
980
+ for (i=0; i < stbiw__ZHASH; ++i)
981
+ (void) stbiw__sbfree(hash_table[i]);
982
+ STBIW_FREE(hash_table);
983
+
984
+ // store uncompressed instead if compression was worse
985
+ if (stbiw__sbn(out) > data_len + 2 + ((data_len+32766)/32767)*5) {
986
+ stbiw__sbn(out) = 2; // truncate to DEFLATE 32K window and FLEVEL = 1
987
+ for (j = 0; j < data_len;) {
988
+ int blocklen = data_len - j;
989
+ if (blocklen > 32767) blocklen = 32767;
990
+ stbiw__sbpush(out, data_len - j == blocklen); // BFINAL = ?, BTYPE = 0 -- no compression
991
+ stbiw__sbpush(out, STBIW_UCHAR(blocklen)); // LEN
992
+ stbiw__sbpush(out, STBIW_UCHAR(blocklen >> 8));
993
+ stbiw__sbpush(out, STBIW_UCHAR(~blocklen)); // NLEN
994
+ stbiw__sbpush(out, STBIW_UCHAR(~blocklen >> 8));
995
+ memcpy(out+stbiw__sbn(out), data+j, blocklen);
996
+ stbiw__sbn(out) += blocklen;
997
+ j += blocklen;
998
+ }
999
+ }
1000
+
1001
+ {
1002
+ // compute adler32 on input
1003
+ unsigned int s1=1, s2=0;
1004
+ int blocklen = (int) (data_len % 5552);
1005
+ j=0;
1006
+ while (j < data_len) {
1007
+ for (i=0; i < blocklen; ++i) { s1 += data[j+i]; s2 += s1; }
1008
+ s1 %= 65521; s2 %= 65521;
1009
+ j += blocklen;
1010
+ blocklen = 5552;
1011
+ }
1012
+ stbiw__sbpush(out, STBIW_UCHAR(s2 >> 8));
1013
+ stbiw__sbpush(out, STBIW_UCHAR(s2));
1014
+ stbiw__sbpush(out, STBIW_UCHAR(s1 >> 8));
1015
+ stbiw__sbpush(out, STBIW_UCHAR(s1));
1016
+ }
1017
+ *out_len = stbiw__sbn(out);
1018
+ // make returned pointer freeable
1019
+ STBIW_MEMMOVE(stbiw__sbraw(out), out, *out_len);
1020
+ return (unsigned char *) stbiw__sbraw(out);
1021
+ #endif // STBIW_ZLIB_COMPRESS
1022
+ }
1023
+
1024
+ static unsigned int stbiw__crc32(unsigned char *buffer, int len)
1025
+ {
1026
+ #ifdef STBIW_CRC32
1027
+ return STBIW_CRC32(buffer, len);
1028
+ #else
1029
+ static unsigned int crc_table[256] =
1030
+ {
1031
+ 0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3,
1032
+ 0x0eDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91,
1033
+ 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7,
1034
+ 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5,
1035
+ 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B,
1036
+ 0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59,
1037
+ 0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F,
1038
+ 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D,
1039
+ 0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433,
1040
+ 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01,
1041
+ 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457,
1042
+ 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65,
1043
+ 0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB,
1044
+ 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9,
1045
+ 0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F,
1046
+ 0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD,
1047
+ 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683,
1048
+ 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1,
1049
+ 0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7,
1050
+ 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5,
1051
+ 0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B,
1052
+ 0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79,
1053
+ 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F,
1054
+ 0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D,
1055
+ 0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713,
1056
+ 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21,
1057
+ 0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777,
1058
+ 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45,
1059
+ 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB,
1060
+ 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9,
1061
+ 0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF,
1062
+ 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D
1063
+ };
1064
+
1065
+ unsigned int crc = ~0u;
1066
+ int i;
1067
+ for (i=0; i < len; ++i)
1068
+ crc = (crc >> 8) ^ crc_table[buffer[i] ^ (crc & 0xff)];
1069
+ return ~crc;
1070
+ #endif
1071
+ }
1072
+
1073
+ #define stbiw__wpng4(o,a,b,c,d) ((o)[0]=STBIW_UCHAR(a),(o)[1]=STBIW_UCHAR(b),(o)[2]=STBIW_UCHAR(c),(o)[3]=STBIW_UCHAR(d),(o)+=4)
1074
+ #define stbiw__wp32(data,v) stbiw__wpng4(data, (v)>>24,(v)>>16,(v)>>8,(v));
1075
+ #define stbiw__wptag(data,s) stbiw__wpng4(data, s[0],s[1],s[2],s[3])
1076
+
1077
+ static void stbiw__wpcrc(unsigned char **data, int len)
1078
+ {
1079
+ unsigned int crc = stbiw__crc32(*data - len - 4, len+4);
1080
+ stbiw__wp32(*data, crc);
1081
+ }
1082
+
1083
+ static unsigned char stbiw__paeth(int a, int b, int c)
1084
+ {
1085
+ int p = a + b - c, pa = abs(p-a), pb = abs(p-b), pc = abs(p-c);
1086
+ if (pa <= pb && pa <= pc) return STBIW_UCHAR(a);
1087
+ if (pb <= pc) return STBIW_UCHAR(b);
1088
+ return STBIW_UCHAR(c);
1089
+ }
1090
+
1091
+ // @OPTIMIZE: provide an option that always forces left-predict or paeth predict
1092
+ static void stbiw__encode_png_line(unsigned char *pixels, int stride_bytes, int width, int height, int y, int n, int filter_type, signed char *line_buffer)
1093
+ {
1094
+ static int mapping[] = { 0,1,2,3,4 };
1095
+ static int firstmap[] = { 0,1,0,5,6 };
1096
+ int *mymap = (y != 0) ? mapping : firstmap;
1097
+ int i;
1098
+ int type = mymap[filter_type];
1099
+ unsigned char *z = pixels + stride_bytes * (stbi__flip_vertically_on_write ? height-1-y : y);
1100
+ int signed_stride = stbi__flip_vertically_on_write ? -stride_bytes : stride_bytes;
1101
+
1102
+ if (type==0) {
1103
+ memcpy(line_buffer, z, width*n);
1104
+ return;
1105
+ }
1106
+
1107
+ // first loop isn't optimized since it's just one pixel
1108
+ for (i = 0; i < n; ++i) {
1109
+ switch (type) {
1110
+ case 1: line_buffer[i] = z[i]; break;
1111
+ case 2: line_buffer[i] = z[i] - z[i-signed_stride]; break;
1112
+ case 3: line_buffer[i] = z[i] - (z[i-signed_stride]>>1); break;
1113
+ case 4: line_buffer[i] = (signed char) (z[i] - stbiw__paeth(0,z[i-signed_stride],0)); break;
1114
+ case 5: line_buffer[i] = z[i]; break;
1115
+ case 6: line_buffer[i] = z[i]; break;
1116
+ }
1117
+ }
1118
+ switch (type) {
1119
+ case 1: for (i=n; i < width*n; ++i) line_buffer[i] = z[i] - z[i-n]; break;
1120
+ case 2: for (i=n; i < width*n; ++i) line_buffer[i] = z[i] - z[i-signed_stride]; break;
1121
+ case 3: for (i=n; i < width*n; ++i) line_buffer[i] = z[i] - ((z[i-n] + z[i-signed_stride])>>1); break;
1122
+ case 4: for (i=n; i < width*n; ++i) line_buffer[i] = z[i] - stbiw__paeth(z[i-n], z[i-signed_stride], z[i-signed_stride-n]); break;
1123
+ case 5: for (i=n; i < width*n; ++i) line_buffer[i] = z[i] - (z[i-n]>>1); break;
1124
+ case 6: for (i=n; i < width*n; ++i) line_buffer[i] = z[i] - stbiw__paeth(z[i-n], 0,0); break;
1125
+ }
1126
+ }
1127
+
1128
+ STBIWDEF unsigned char *stbi_write_png_to_mem(const unsigned char *pixels, int stride_bytes, int x, int y, int n, int *out_len)
1129
+ {
1130
+ int force_filter = stbi_write_force_png_filter;
1131
+ int ctype[5] = { -1, 0, 4, 2, 6 };
1132
+ unsigned char sig[8] = { 137,80,78,71,13,10,26,10 };
1133
+ unsigned char *out,*o, *filt, *zlib;
1134
+ signed char *line_buffer;
1135
+ int j,zlen;
1136
+
1137
+ if (stride_bytes == 0)
1138
+ stride_bytes = x * n;
1139
+
1140
+ if (force_filter >= 5) {
1141
+ force_filter = -1;
1142
+ }
1143
+
1144
+ filt = (unsigned char *) STBIW_MALLOC((x*n+1) * y); if (!filt) return 0;
1145
+ line_buffer = (signed char *) STBIW_MALLOC(x * n); if (!line_buffer) { STBIW_FREE(filt); return 0; }
1146
+ for (j=0; j < y; ++j) {
1147
+ int filter_type;
1148
+ if (force_filter > -1) {
1149
+ filter_type = force_filter;
1150
+ stbiw__encode_png_line((unsigned char*)(pixels), stride_bytes, x, y, j, n, force_filter, line_buffer);
1151
+ } else { // Estimate the best filter by running through all of them:
1152
+ int best_filter = 0, best_filter_val = 0x7fffffff, est, i;
1153
+ for (filter_type = 0; filter_type < 5; filter_type++) {
1154
+ stbiw__encode_png_line((unsigned char*)(pixels), stride_bytes, x, y, j, n, filter_type, line_buffer);
1155
+
1156
+ // Estimate the entropy of the line using this filter; the less, the better.
1157
+ est = 0;
1158
+ for (i = 0; i < x*n; ++i) {
1159
+ est += abs((signed char) line_buffer[i]);
1160
+ }
1161
+ if (est < best_filter_val) {
1162
+ best_filter_val = est;
1163
+ best_filter = filter_type;
1164
+ }
1165
+ }
1166
+ if (filter_type != best_filter) { // If the last iteration already got us the best filter, don't redo it
1167
+ stbiw__encode_png_line((unsigned char*)(pixels), stride_bytes, x, y, j, n, best_filter, line_buffer);
1168
+ filter_type = best_filter;
1169
+ }
1170
+ }
1171
+ // when we get here, filter_type contains the filter type, and line_buffer contains the data
1172
+ filt[j*(x*n+1)] = (unsigned char) filter_type;
1173
+ STBIW_MEMMOVE(filt+j*(x*n+1)+1, line_buffer, x*n);
1174
+ }
1175
+ STBIW_FREE(line_buffer);
1176
+ zlib = stbi_zlib_compress(filt, y*( x*n+1), &zlen, stbi_write_png_compression_level);
1177
+ STBIW_FREE(filt);
1178
+ if (!zlib) return 0;
1179
+
1180
+ // each tag requires 12 bytes of overhead
1181
+ out = (unsigned char *) STBIW_MALLOC(8 + 12+13 + 12+zlen + 12);
1182
+ if (!out) return 0;
1183
+ *out_len = 8 + 12+13 + 12+zlen + 12;
1184
+
1185
+ o=out;
1186
+ STBIW_MEMMOVE(o,sig,8); o+= 8;
1187
+ stbiw__wp32(o, 13); // header length
1188
+ stbiw__wptag(o, "IHDR");
1189
+ stbiw__wp32(o, x);
1190
+ stbiw__wp32(o, y);
1191
+ *o++ = 8;
1192
+ *o++ = STBIW_UCHAR(ctype[n]);
1193
+ *o++ = 0;
1194
+ *o++ = 0;
1195
+ *o++ = 0;
1196
+ stbiw__wpcrc(&o,13);
1197
+
1198
+ stbiw__wp32(o, zlen);
1199
+ stbiw__wptag(o, "IDAT");
1200
+ STBIW_MEMMOVE(o, zlib, zlen);
1201
+ o += zlen;
1202
+ STBIW_FREE(zlib);
1203
+ stbiw__wpcrc(&o, zlen);
1204
+
1205
+ stbiw__wp32(o,0);
1206
+ stbiw__wptag(o, "IEND");
1207
+ stbiw__wpcrc(&o,0);
1208
+
1209
+ STBIW_ASSERT(o == out + *out_len);
1210
+
1211
+ return out;
1212
+ }
1213
+
1214
+ #ifndef STBI_WRITE_NO_STDIO
1215
+ STBIWDEF int stbi_write_png(char const *filename, int x, int y, int comp, const void *data, int stride_bytes)
1216
+ {
1217
+ FILE *f;
1218
+ int len;
1219
+ unsigned char *png = stbi_write_png_to_mem((const unsigned char *) data, stride_bytes, x, y, comp, &len);
1220
+ if (png == NULL) return 0;
1221
+
1222
+ f = stbiw__fopen(filename, "wb");
1223
+ if (!f) { STBIW_FREE(png); return 0; }
1224
+ fwrite(png, 1, len, f);
1225
+ fclose(f);
1226
+ STBIW_FREE(png);
1227
+ return 1;
1228
+ }
1229
+ #endif
1230
+
1231
+ STBIWDEF int stbi_write_png_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data, int stride_bytes)
1232
+ {
1233
+ int len;
1234
+ unsigned char *png = stbi_write_png_to_mem((const unsigned char *) data, stride_bytes, x, y, comp, &len);
1235
+ if (png == NULL) return 0;
1236
+ func(context, png, len);
1237
+ STBIW_FREE(png);
1238
+ return 1;
1239
+ }
1240
+
1241
+
1242
+ /* ***************************************************************************
1243
+ *
1244
+ * JPEG writer
1245
+ *
1246
+ * This is based on Jon Olick's jo_jpeg.cpp:
1247
+ * public domain Simple, Minimalistic JPEG writer - http://www.jonolick.com/code.html
1248
+ */
1249
+
1250
+ static const unsigned char stbiw__jpg_ZigZag[] = { 0,1,5,6,14,15,27,28,2,4,7,13,16,26,29,42,3,8,12,17,25,30,41,43,9,11,18,
1251
+ 24,31,40,44,53,10,19,23,32,39,45,52,54,20,22,33,38,46,51,55,60,21,34,37,47,50,56,59,61,35,36,48,49,57,58,62,63 };
1252
+
1253
+ static void stbiw__jpg_writeBits(stbi__write_context *s, int *bitBufP, int *bitCntP, const unsigned short *bs) {
1254
+ int bitBuf = *bitBufP, bitCnt = *bitCntP;
1255
+ bitCnt += bs[1];
1256
+ bitBuf |= bs[0] << (24 - bitCnt);
1257
+ while(bitCnt >= 8) {
1258
+ unsigned char c = (bitBuf >> 16) & 255;
1259
+ stbiw__putc(s, c);
1260
+ if(c == 255) {
1261
+ stbiw__putc(s, 0);
1262
+ }
1263
+ bitBuf <<= 8;
1264
+ bitCnt -= 8;
1265
+ }
1266
+ *bitBufP = bitBuf;
1267
+ *bitCntP = bitCnt;
1268
+ }
1269
+
1270
+ static void stbiw__jpg_DCT(float *d0p, float *d1p, float *d2p, float *d3p, float *d4p, float *d5p, float *d6p, float *d7p) {
1271
+ float d0 = *d0p, d1 = *d1p, d2 = *d2p, d3 = *d3p, d4 = *d4p, d5 = *d5p, d6 = *d6p, d7 = *d7p;
1272
+ float z1, z2, z3, z4, z5, z11, z13;
1273
+
1274
+ float tmp0 = d0 + d7;
1275
+ float tmp7 = d0 - d7;
1276
+ float tmp1 = d1 + d6;
1277
+ float tmp6 = d1 - d6;
1278
+ float tmp2 = d2 + d5;
1279
+ float tmp5 = d2 - d5;
1280
+ float tmp3 = d3 + d4;
1281
+ float tmp4 = d3 - d4;
1282
+
1283
+ // Even part
1284
+ float tmp10 = tmp0 + tmp3; // phase 2
1285
+ float tmp13 = tmp0 - tmp3;
1286
+ float tmp11 = tmp1 + tmp2;
1287
+ float tmp12 = tmp1 - tmp2;
1288
+
1289
+ d0 = tmp10 + tmp11; // phase 3
1290
+ d4 = tmp10 - tmp11;
1291
+
1292
+ z1 = (tmp12 + tmp13) * 0.707106781f; // c4
1293
+ d2 = tmp13 + z1; // phase 5
1294
+ d6 = tmp13 - z1;
1295
+
1296
+ // Odd part
1297
+ tmp10 = tmp4 + tmp5; // phase 2
1298
+ tmp11 = tmp5 + tmp6;
1299
+ tmp12 = tmp6 + tmp7;
1300
+
1301
+ // The rotator is modified from fig 4-8 to avoid extra negations.
1302
+ z5 = (tmp10 - tmp12) * 0.382683433f; // c6
1303
+ z2 = tmp10 * 0.541196100f + z5; // c2-c6
1304
+ z4 = tmp12 * 1.306562965f + z5; // c2+c6
1305
+ z3 = tmp11 * 0.707106781f; // c4
1306
+
1307
+ z11 = tmp7 + z3; // phase 5
1308
+ z13 = tmp7 - z3;
1309
+
1310
+ *d5p = z13 + z2; // phase 6
1311
+ *d3p = z13 - z2;
1312
+ *d1p = z11 + z4;
1313
+ *d7p = z11 - z4;
1314
+
1315
+ *d0p = d0; *d2p = d2; *d4p = d4; *d6p = d6;
1316
+ }
1317
+
1318
+ static void stbiw__jpg_calcBits(int val, unsigned short bits[2]) {
1319
+ int tmp1 = val < 0 ? -val : val;
1320
+ val = val < 0 ? val-1 : val;
1321
+ bits[1] = 1;
1322
+ while(tmp1 >>= 1) {
1323
+ ++bits[1];
1324
+ }
1325
+ bits[0] = val & ((1<<bits[1])-1);
1326
+ }
1327
+
1328
+ static int stbiw__jpg_processDU(stbi__write_context *s, int *bitBuf, int *bitCnt, float *CDU, int du_stride, float *fdtbl, int DC, const unsigned short HTDC[256][2], const unsigned short HTAC[256][2]) {
1329
+ const unsigned short EOB[2] = { HTAC[0x00][0], HTAC[0x00][1] };
1330
+ const unsigned short M16zeroes[2] = { HTAC[0xF0][0], HTAC[0xF0][1] };
1331
+ int dataOff, i, j, n, diff, end0pos, x, y;
1332
+ int DU[64];
1333
+
1334
+ // DCT rows
1335
+ for(dataOff=0, n=du_stride*8; dataOff<n; dataOff+=du_stride) {
1336
+ stbiw__jpg_DCT(&CDU[dataOff], &CDU[dataOff+1], &CDU[dataOff+2], &CDU[dataOff+3], &CDU[dataOff+4], &CDU[dataOff+5], &CDU[dataOff+6], &CDU[dataOff+7]);
1337
+ }
1338
+ // DCT columns
1339
+ for(dataOff=0; dataOff<8; ++dataOff) {
1340
+ stbiw__jpg_DCT(&CDU[dataOff], &CDU[dataOff+du_stride], &CDU[dataOff+du_stride*2], &CDU[dataOff+du_stride*3], &CDU[dataOff+du_stride*4],
1341
+ &CDU[dataOff+du_stride*5], &CDU[dataOff+du_stride*6], &CDU[dataOff+du_stride*7]);
1342
+ }
1343
+ // Quantize/descale/zigzag the coefficients
1344
+ for(y = 0, j=0; y < 8; ++y) {
1345
+ for(x = 0; x < 8; ++x,++j) {
1346
+ float v;
1347
+ i = y*du_stride+x;
1348
+ v = CDU[i]*fdtbl[j];
1349
+ // DU[stbiw__jpg_ZigZag[j]] = (int)(v < 0 ? ceilf(v - 0.5f) : floorf(v + 0.5f));
1350
+ // ceilf() and floorf() are C99, not C89, but I /think/ they're not needed here anyway?
1351
+ DU[stbiw__jpg_ZigZag[j]] = (int)(v < 0 ? v - 0.5f : v + 0.5f);
1352
+ }
1353
+ }
1354
+
1355
+ // Encode DC
1356
+ diff = DU[0] - DC;
1357
+ if (diff == 0) {
1358
+ stbiw__jpg_writeBits(s, bitBuf, bitCnt, HTDC[0]);
1359
+ } else {
1360
+ unsigned short bits[2];
1361
+ stbiw__jpg_calcBits(diff, bits);
1362
+ stbiw__jpg_writeBits(s, bitBuf, bitCnt, HTDC[bits[1]]);
1363
+ stbiw__jpg_writeBits(s, bitBuf, bitCnt, bits);
1364
+ }
1365
+ // Encode ACs
1366
+ end0pos = 63;
1367
+ for(; (end0pos>0)&&(DU[end0pos]==0); --end0pos) {
1368
+ }
1369
+ // end0pos = first element in reverse order !=0
1370
+ if(end0pos == 0) {
1371
+ stbiw__jpg_writeBits(s, bitBuf, bitCnt, EOB);
1372
+ return DU[0];
1373
+ }
1374
+ for(i = 1; i <= end0pos; ++i) {
1375
+ int startpos = i;
1376
+ int nrzeroes;
1377
+ unsigned short bits[2];
1378
+ for (; DU[i]==0 && i<=end0pos; ++i) {
1379
+ }
1380
+ nrzeroes = i-startpos;
1381
+ if ( nrzeroes >= 16 ) {
1382
+ int lng = nrzeroes>>4;
1383
+ int nrmarker;
1384
+ for (nrmarker=1; nrmarker <= lng; ++nrmarker)
1385
+ stbiw__jpg_writeBits(s, bitBuf, bitCnt, M16zeroes);
1386
+ nrzeroes &= 15;
1387
+ }
1388
+ stbiw__jpg_calcBits(DU[i], bits);
1389
+ stbiw__jpg_writeBits(s, bitBuf, bitCnt, HTAC[(nrzeroes<<4)+bits[1]]);
1390
+ stbiw__jpg_writeBits(s, bitBuf, bitCnt, bits);
1391
+ }
1392
+ if(end0pos != 63) {
1393
+ stbiw__jpg_writeBits(s, bitBuf, bitCnt, EOB);
1394
+ }
1395
+ return DU[0];
1396
+ }
1397
+
1398
+ static int stbi_write_jpg_core(stbi__write_context *s, int width, int height, int comp, const void* data, int quality) {
1399
+ // Constants that don't pollute global namespace
1400
+ static const unsigned char std_dc_luminance_nrcodes[] = {0,0,1,5,1,1,1,1,1,1,0,0,0,0,0,0,0};
1401
+ static const unsigned char std_dc_luminance_values[] = {0,1,2,3,4,5,6,7,8,9,10,11};
1402
+ static const unsigned char std_ac_luminance_nrcodes[] = {0,0,2,1,3,3,2,4,3,5,5,4,4,0,0,1,0x7d};
1403
+ static const unsigned char std_ac_luminance_values[] = {
1404
+ 0x01,0x02,0x03,0x00,0x04,0x11,0x05,0x12,0x21,0x31,0x41,0x06,0x13,0x51,0x61,0x07,0x22,0x71,0x14,0x32,0x81,0x91,0xa1,0x08,
1405
+ 0x23,0x42,0xb1,0xc1,0x15,0x52,0xd1,0xf0,0x24,0x33,0x62,0x72,0x82,0x09,0x0a,0x16,0x17,0x18,0x19,0x1a,0x25,0x26,0x27,0x28,
1406
+ 0x29,0x2a,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4a,0x53,0x54,0x55,0x56,0x57,0x58,0x59,
1407
+ 0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x83,0x84,0x85,0x86,0x87,0x88,0x89,
1408
+ 0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,0xb5,0xb6,
1409
+ 0xb7,0xb8,0xb9,0xba,0xc2,0xc3,0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xe1,0xe2,
1410
+ 0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0xfa
1411
+ };
1412
+ static const unsigned char std_dc_chrominance_nrcodes[] = {0,0,3,1,1,1,1,1,1,1,1,1,0,0,0,0,0};
1413
+ static const unsigned char std_dc_chrominance_values[] = {0,1,2,3,4,5,6,7,8,9,10,11};
1414
+ static const unsigned char std_ac_chrominance_nrcodes[] = {0,0,2,1,2,4,4,3,4,7,5,4,4,0,1,2,0x77};
1415
+ static const unsigned char std_ac_chrominance_values[] = {
1416
+ 0x00,0x01,0x02,0x03,0x11,0x04,0x05,0x21,0x31,0x06,0x12,0x41,0x51,0x07,0x61,0x71,0x13,0x22,0x32,0x81,0x08,0x14,0x42,0x91,
1417
+ 0xa1,0xb1,0xc1,0x09,0x23,0x33,0x52,0xf0,0x15,0x62,0x72,0xd1,0x0a,0x16,0x24,0x34,0xe1,0x25,0xf1,0x17,0x18,0x19,0x1a,0x26,
1418
+ 0x27,0x28,0x29,0x2a,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4a,0x53,0x54,0x55,0x56,0x57,0x58,
1419
+ 0x59,0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x82,0x83,0x84,0x85,0x86,0x87,
1420
+ 0x88,0x89,0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,
1421
+ 0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xc2,0xc3,0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,
1422
+ 0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0xfa
1423
+ };
1424
+ // Huffman tables
1425
+ static const unsigned short YDC_HT[256][2] = { {0,2},{2,3},{3,3},{4,3},{5,3},{6,3},{14,4},{30,5},{62,6},{126,7},{254,8},{510,9}};
1426
+ static const unsigned short UVDC_HT[256][2] = { {0,2},{1,2},{2,2},{6,3},{14,4},{30,5},{62,6},{126,7},{254,8},{510,9},{1022,10},{2046,11}};
1427
+ static const unsigned short YAC_HT[256][2] = {
1428
+ {10,4},{0,2},{1,2},{4,3},{11,4},{26,5},{120,7},{248,8},{1014,10},{65410,16},{65411,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1429
+ {12,4},{27,5},{121,7},{502,9},{2038,11},{65412,16},{65413,16},{65414,16},{65415,16},{65416,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1430
+ {28,5},{249,8},{1015,10},{4084,12},{65417,16},{65418,16},{65419,16},{65420,16},{65421,16},{65422,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1431
+ {58,6},{503,9},{4085,12},{65423,16},{65424,16},{65425,16},{65426,16},{65427,16},{65428,16},{65429,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1432
+ {59,6},{1016,10},{65430,16},{65431,16},{65432,16},{65433,16},{65434,16},{65435,16},{65436,16},{65437,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1433
+ {122,7},{2039,11},{65438,16},{65439,16},{65440,16},{65441,16},{65442,16},{65443,16},{65444,16},{65445,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1434
+ {123,7},{4086,12},{65446,16},{65447,16},{65448,16},{65449,16},{65450,16},{65451,16},{65452,16},{65453,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1435
+ {250,8},{4087,12},{65454,16},{65455,16},{65456,16},{65457,16},{65458,16},{65459,16},{65460,16},{65461,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1436
+ {504,9},{32704,15},{65462,16},{65463,16},{65464,16},{65465,16},{65466,16},{65467,16},{65468,16},{65469,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1437
+ {505,9},{65470,16},{65471,16},{65472,16},{65473,16},{65474,16},{65475,16},{65476,16},{65477,16},{65478,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1438
+ {506,9},{65479,16},{65480,16},{65481,16},{65482,16},{65483,16},{65484,16},{65485,16},{65486,16},{65487,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1439
+ {1017,10},{65488,16},{65489,16},{65490,16},{65491,16},{65492,16},{65493,16},{65494,16},{65495,16},{65496,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1440
+ {1018,10},{65497,16},{65498,16},{65499,16},{65500,16},{65501,16},{65502,16},{65503,16},{65504,16},{65505,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1441
+ {2040,11},{65506,16},{65507,16},{65508,16},{65509,16},{65510,16},{65511,16},{65512,16},{65513,16},{65514,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1442
+ {65515,16},{65516,16},{65517,16},{65518,16},{65519,16},{65520,16},{65521,16},{65522,16},{65523,16},{65524,16},{0,0},{0,0},{0,0},{0,0},{0,0},
1443
+ {2041,11},{65525,16},{65526,16},{65527,16},{65528,16},{65529,16},{65530,16},{65531,16},{65532,16},{65533,16},{65534,16},{0,0},{0,0},{0,0},{0,0},{0,0}
1444
+ };
1445
+ static const unsigned short UVAC_HT[256][2] = {
1446
+ {0,2},{1,2},{4,3},{10,4},{24,5},{25,5},{56,6},{120,7},{500,9},{1014,10},{4084,12},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1447
+ {11,4},{57,6},{246,8},{501,9},{2038,11},{4085,12},{65416,16},{65417,16},{65418,16},{65419,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1448
+ {26,5},{247,8},{1015,10},{4086,12},{32706,15},{65420,16},{65421,16},{65422,16},{65423,16},{65424,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1449
+ {27,5},{248,8},{1016,10},{4087,12},{65425,16},{65426,16},{65427,16},{65428,16},{65429,16},{65430,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1450
+ {58,6},{502,9},{65431,16},{65432,16},{65433,16},{65434,16},{65435,16},{65436,16},{65437,16},{65438,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1451
+ {59,6},{1017,10},{65439,16},{65440,16},{65441,16},{65442,16},{65443,16},{65444,16},{65445,16},{65446,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1452
+ {121,7},{2039,11},{65447,16},{65448,16},{65449,16},{65450,16},{65451,16},{65452,16},{65453,16},{65454,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1453
+ {122,7},{2040,11},{65455,16},{65456,16},{65457,16},{65458,16},{65459,16},{65460,16},{65461,16},{65462,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1454
+ {249,8},{65463,16},{65464,16},{65465,16},{65466,16},{65467,16},{65468,16},{65469,16},{65470,16},{65471,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1455
+ {503,9},{65472,16},{65473,16},{65474,16},{65475,16},{65476,16},{65477,16},{65478,16},{65479,16},{65480,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1456
+ {504,9},{65481,16},{65482,16},{65483,16},{65484,16},{65485,16},{65486,16},{65487,16},{65488,16},{65489,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1457
+ {505,9},{65490,16},{65491,16},{65492,16},{65493,16},{65494,16},{65495,16},{65496,16},{65497,16},{65498,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1458
+ {506,9},{65499,16},{65500,16},{65501,16},{65502,16},{65503,16},{65504,16},{65505,16},{65506,16},{65507,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1459
+ {2041,11},{65508,16},{65509,16},{65510,16},{65511,16},{65512,16},{65513,16},{65514,16},{65515,16},{65516,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
1460
+ {16352,14},{65517,16},{65518,16},{65519,16},{65520,16},{65521,16},{65522,16},{65523,16},{65524,16},{65525,16},{0,0},{0,0},{0,0},{0,0},{0,0},
1461
+ {1018,10},{32707,15},{65526,16},{65527,16},{65528,16},{65529,16},{65530,16},{65531,16},{65532,16},{65533,16},{65534,16},{0,0},{0,0},{0,0},{0,0},{0,0}
1462
+ };
1463
+ static const int YQT[] = {16,11,10,16,24,40,51,61,12,12,14,19,26,58,60,55,14,13,16,24,40,57,69,56,14,17,22,29,51,87,80,62,18,22,
1464
+ 37,56,68,109,103,77,24,35,55,64,81,104,113,92,49,64,78,87,103,121,120,101,72,92,95,98,112,100,103,99};
1465
+ static const int UVQT[] = {17,18,24,47,99,99,99,99,18,21,26,66,99,99,99,99,24,26,56,99,99,99,99,99,47,66,99,99,99,99,99,99,
1466
+ 99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99};
1467
+ static const float aasf[] = { 1.0f * 2.828427125f, 1.387039845f * 2.828427125f, 1.306562965f * 2.828427125f, 1.175875602f * 2.828427125f,
1468
+ 1.0f * 2.828427125f, 0.785694958f * 2.828427125f, 0.541196100f * 2.828427125f, 0.275899379f * 2.828427125f };
1469
+
1470
+ int row, col, i, k, subsample;
1471
+ float fdtbl_Y[64], fdtbl_UV[64];
1472
+ unsigned char YTable[64], UVTable[64];
1473
+
1474
+ if(!data || !width || !height || comp > 4 || comp < 1) {
1475
+ return 0;
1476
+ }
1477
+
1478
+ quality = quality ? quality : 90;
1479
+ subsample = quality <= 90 ? 1 : 0;
1480
+ quality = quality < 1 ? 1 : quality > 100 ? 100 : quality;
1481
+ quality = quality < 50 ? 5000 / quality : 200 - quality * 2;
1482
+
1483
+ for(i = 0; i < 64; ++i) {
1484
+ int uvti, yti = (YQT[i]*quality+50)/100;
1485
+ YTable[stbiw__jpg_ZigZag[i]] = (unsigned char) (yti < 1 ? 1 : yti > 255 ? 255 : yti);
1486
+ uvti = (UVQT[i]*quality+50)/100;
1487
+ UVTable[stbiw__jpg_ZigZag[i]] = (unsigned char) (uvti < 1 ? 1 : uvti > 255 ? 255 : uvti);
1488
+ }
1489
+
1490
+ for(row = 0, k = 0; row < 8; ++row) {
1491
+ for(col = 0; col < 8; ++col, ++k) {
1492
+ fdtbl_Y[k] = 1 / (YTable [stbiw__jpg_ZigZag[k]] * aasf[row] * aasf[col]);
1493
+ fdtbl_UV[k] = 1 / (UVTable[stbiw__jpg_ZigZag[k]] * aasf[row] * aasf[col]);
1494
+ }
1495
+ }
1496
+
1497
+ // Write Headers
1498
+ {
1499
+ static const unsigned char head0[] = { 0xFF,0xD8,0xFF,0xE0,0,0x10,'J','F','I','F',0,1,1,0,0,1,0,1,0,0,0xFF,0xDB,0,0x84,0 };
1500
+ static const unsigned char head2[] = { 0xFF,0xDA,0,0xC,3,1,0,2,0x11,3,0x11,0,0x3F,0 };
1501
+ const unsigned char head1[] = { 0xFF,0xC0,0,0x11,8,(unsigned char)(height>>8),STBIW_UCHAR(height),(unsigned char)(width>>8),STBIW_UCHAR(width),
1502
+ 3,1,(unsigned char)(subsample?0x22:0x11),0,2,0x11,1,3,0x11,1,0xFF,0xC4,0x01,0xA2,0 };
1503
+ s->func(s->context, (void*)head0, sizeof(head0));
1504
+ s->func(s->context, (void*)YTable, sizeof(YTable));
1505
+ stbiw__putc(s, 1);
1506
+ s->func(s->context, UVTable, sizeof(UVTable));
1507
+ s->func(s->context, (void*)head1, sizeof(head1));
1508
+ s->func(s->context, (void*)(std_dc_luminance_nrcodes+1), sizeof(std_dc_luminance_nrcodes)-1);
1509
+ s->func(s->context, (void*)std_dc_luminance_values, sizeof(std_dc_luminance_values));
1510
+ stbiw__putc(s, 0x10); // HTYACinfo
1511
+ s->func(s->context, (void*)(std_ac_luminance_nrcodes+1), sizeof(std_ac_luminance_nrcodes)-1);
1512
+ s->func(s->context, (void*)std_ac_luminance_values, sizeof(std_ac_luminance_values));
1513
+ stbiw__putc(s, 1); // HTUDCinfo
1514
+ s->func(s->context, (void*)(std_dc_chrominance_nrcodes+1), sizeof(std_dc_chrominance_nrcodes)-1);
1515
+ s->func(s->context, (void*)std_dc_chrominance_values, sizeof(std_dc_chrominance_values));
1516
+ stbiw__putc(s, 0x11); // HTUACinfo
1517
+ s->func(s->context, (void*)(std_ac_chrominance_nrcodes+1), sizeof(std_ac_chrominance_nrcodes)-1);
1518
+ s->func(s->context, (void*)std_ac_chrominance_values, sizeof(std_ac_chrominance_values));
1519
+ s->func(s->context, (void*)head2, sizeof(head2));
1520
+ }
1521
+
1522
+ // Encode 8x8 macroblocks
1523
+ {
1524
+ static const unsigned short fillBits[] = {0x7F, 7};
1525
+ int DCY=0, DCU=0, DCV=0;
1526
+ int bitBuf=0, bitCnt=0;
1527
+ // comp == 2 is grey+alpha (alpha is ignored)
1528
+ int ofsG = comp > 2 ? 1 : 0, ofsB = comp > 2 ? 2 : 0;
1529
+ const unsigned char *dataR = (const unsigned char *)data;
1530
+ const unsigned char *dataG = dataR + ofsG;
1531
+ const unsigned char *dataB = dataR + ofsB;
1532
+ int x, y, pos;
1533
+ if(subsample) {
1534
+ for(y = 0; y < height; y += 16) {
1535
+ for(x = 0; x < width; x += 16) {
1536
+ float Y[256], U[256], V[256];
1537
+ for(row = y, pos = 0; row < y+16; ++row) {
1538
+ // row >= height => use last input row
1539
+ int clamped_row = (row < height) ? row : height - 1;
1540
+ int base_p = (stbi__flip_vertically_on_write ? (height-1-clamped_row) : clamped_row)*width*comp;
1541
+ for(col = x; col < x+16; ++col, ++pos) {
1542
+ // if col >= width => use pixel from last input column
1543
+ int p = base_p + ((col < width) ? col : (width-1))*comp;
1544
+ float r = dataR[p], g = dataG[p], b = dataB[p];
1545
+ Y[pos]= +0.29900f*r + 0.58700f*g + 0.11400f*b - 128;
1546
+ U[pos]= -0.16874f*r - 0.33126f*g + 0.50000f*b;
1547
+ V[pos]= +0.50000f*r - 0.41869f*g - 0.08131f*b;
1548
+ }
1549
+ }
1550
+ DCY = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, Y+0, 16, fdtbl_Y, DCY, YDC_HT, YAC_HT);
1551
+ DCY = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, Y+8, 16, fdtbl_Y, DCY, YDC_HT, YAC_HT);
1552
+ DCY = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, Y+128, 16, fdtbl_Y, DCY, YDC_HT, YAC_HT);
1553
+ DCY = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, Y+136, 16, fdtbl_Y, DCY, YDC_HT, YAC_HT);
1554
+
1555
+ // subsample U,V
1556
+ {
1557
+ float subU[64], subV[64];
1558
+ int yy, xx;
1559
+ for(yy = 0, pos = 0; yy < 8; ++yy) {
1560
+ for(xx = 0; xx < 8; ++xx, ++pos) {
1561
+ int j = yy*32+xx*2;
1562
+ subU[pos] = (U[j+0] + U[j+1] + U[j+16] + U[j+17]) * 0.25f;
1563
+ subV[pos] = (V[j+0] + V[j+1] + V[j+16] + V[j+17]) * 0.25f;
1564
+ }
1565
+ }
1566
+ DCU = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, subU, 8, fdtbl_UV, DCU, UVDC_HT, UVAC_HT);
1567
+ DCV = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, subV, 8, fdtbl_UV, DCV, UVDC_HT, UVAC_HT);
1568
+ }
1569
+ }
1570
+ }
1571
+ } else {
1572
+ for(y = 0; y < height; y += 8) {
1573
+ for(x = 0; x < width; x += 8) {
1574
+ float Y[64], U[64], V[64];
1575
+ for(row = y, pos = 0; row < y+8; ++row) {
1576
+ // row >= height => use last input row
1577
+ int clamped_row = (row < height) ? row : height - 1;
1578
+ int base_p = (stbi__flip_vertically_on_write ? (height-1-clamped_row) : clamped_row)*width*comp;
1579
+ for(col = x; col < x+8; ++col, ++pos) {
1580
+ // if col >= width => use pixel from last input column
1581
+ int p = base_p + ((col < width) ? col : (width-1))*comp;
1582
+ float r = dataR[p], g = dataG[p], b = dataB[p];
1583
+ Y[pos]= +0.29900f*r + 0.58700f*g + 0.11400f*b - 128;
1584
+ U[pos]= -0.16874f*r - 0.33126f*g + 0.50000f*b;
1585
+ V[pos]= +0.50000f*r - 0.41869f*g - 0.08131f*b;
1586
+ }
1587
+ }
1588
+
1589
+ DCY = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, Y, 8, fdtbl_Y, DCY, YDC_HT, YAC_HT);
1590
+ DCU = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, U, 8, fdtbl_UV, DCU, UVDC_HT, UVAC_HT);
1591
+ DCV = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, V, 8, fdtbl_UV, DCV, UVDC_HT, UVAC_HT);
1592
+ }
1593
+ }
1594
+ }
1595
+
1596
+ // Do the bit alignment of the EOI marker
1597
+ stbiw__jpg_writeBits(s, &bitBuf, &bitCnt, fillBits);
1598
+ }
1599
+
1600
+ // EOI
1601
+ stbiw__putc(s, 0xFF);
1602
+ stbiw__putc(s, 0xD9);
1603
+
1604
+ return 1;
1605
+ }
1606
+
1607
+ STBIWDEF int stbi_write_jpg_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data, int quality)
1608
+ {
1609
+ stbi__write_context s = { 0 };
1610
+ stbi__start_write_callbacks(&s, func, context);
1611
+ return stbi_write_jpg_core(&s, x, y, comp, (void *) data, quality);
1612
+ }
1613
+
1614
+
1615
+ #ifndef STBI_WRITE_NO_STDIO
1616
+ STBIWDEF int stbi_write_jpg(char const *filename, int x, int y, int comp, const void *data, int quality)
1617
+ {
1618
+ stbi__write_context s = { 0 };
1619
+ if (stbi__start_write_file(&s,filename)) {
1620
+ int r = stbi_write_jpg_core(&s, x, y, comp, data, quality);
1621
+ stbi__end_write_file(&s);
1622
+ return r;
1623
+ } else
1624
+ return 0;
1625
+ }
1626
+ #endif
1627
+
1628
+ #endif // STB_IMAGE_WRITE_IMPLEMENTATION
1629
+
1630
+ /* Revision history
1631
+ 1.16 (2021-07-11)
1632
+ make Deflate code emit uncompressed blocks when it would otherwise expand
1633
+ support writing BMPs with alpha channel
1634
+ 1.15 (2020-07-13) unknown
1635
+ 1.14 (2020-02-02) updated JPEG writer to downsample chroma channels
1636
+ 1.13
1637
+ 1.12
1638
+ 1.11 (2019-08-11)
1639
+
1640
+ 1.10 (2019-02-07)
1641
+ support utf8 filenames in Windows; fix warnings and platform ifdefs
1642
+ 1.09 (2018-02-11)
1643
+ fix typo in zlib quality API, improve STB_I_W_STATIC in C++
1644
+ 1.08 (2018-01-29)
1645
+ add stbi__flip_vertically_on_write, external zlib, zlib quality, choose PNG filter
1646
+ 1.07 (2017-07-24)
1647
+ doc fix
1648
+ 1.06 (2017-07-23)
1649
+ writing JPEG (using Jon Olick's code)
1650
+ 1.05 ???
1651
+ 1.04 (2017-03-03)
1652
+ monochrome BMP expansion
1653
+ 1.03 ???
1654
+ 1.02 (2016-04-02)
1655
+ avoid allocating large structures on the stack
1656
+ 1.01 (2016-01-16)
1657
+ STBIW_REALLOC_SIZED: support allocators with no realloc support
1658
+ avoid race-condition in crc initialization
1659
+ minor compile issues
1660
+ 1.00 (2015-09-14)
1661
+ installable file IO function
1662
+ 0.99 (2015-09-13)
1663
+ warning fixes; TGA rle support
1664
+ 0.98 (2015-04-08)
1665
+ added STBIW_MALLOC, STBIW_ASSERT etc
1666
+ 0.97 (2015-01-18)
1667
+ fixed HDR asserts, rewrote HDR rle logic
1668
+ 0.96 (2015-01-17)
1669
+ add HDR output
1670
+ fix monochrome BMP
1671
+ 0.95 (2014-08-17)
1672
+ add monochrome TGA output
1673
+ 0.94 (2014-05-31)
1674
+ rename private functions to avoid conflicts with stb_image.h
1675
+ 0.93 (2014-05-27)
1676
+ warning fixes
1677
+ 0.92 (2010-08-01)
1678
+ casts to unsigned char to fix warnings
1679
+ 0.91 (2010-07-17)
1680
+ first public release
1681
+ 0.90 first internal release
1682
+ */
1683
+
1684
+ /*
1685
+ ------------------------------------------------------------------------------
1686
+ This software is available under 2 licenses -- choose whichever you prefer.
1687
+ ------------------------------------------------------------------------------
1688
+ ALTERNATIVE A - MIT License
1689
+ Copyright (c) 2017 Sean Barrett
1690
+ Permission is hereby granted, free of charge, to any person obtaining a copy of
1691
+ this software and associated documentation files (the "Software"), to deal in
1692
+ the Software without restriction, including without limitation the rights to
1693
+ use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
1694
+ of the Software, and to permit persons to whom the Software is furnished to do
1695
+ so, subject to the following conditions:
1696
+ The above copyright notice and this permission notice shall be included in all
1697
+ copies or substantial portions of the Software.
1698
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
1699
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
1700
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
1701
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
1702
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
1703
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
1704
+ SOFTWARE.
1705
+ ------------------------------------------------------------------------------
1706
+ ALTERNATIVE B - Public Domain (www.unlicense.org)
1707
+ This is free and unencumbered software released into the public domain.
1708
+ Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
1709
+ software, either in source code form or as a compiled binary, for any purpose,
1710
+ commercial or non-commercial, and by any means.
1711
+ In jurisdictions that recognize copyright laws, the author or authors of this
1712
+ software dedicate any and all copyright interest in the software to the public
1713
+ domain. We make this dedication for the benefit of the public at large and to
1714
+ the detriment of our heirs and successors. We intend this dedication to be an
1715
+ overt act of relinquishment in perpetuity of all present and future rights to
1716
+ this software under copyright law.
1717
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
1718
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
1719
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
1720
+ AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
1721
+ ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
1722
+ WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
1723
+ ------------------------------------------------------------------------------
1724
+ */
submodules/simple-knn/ext.cpp ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ * Copyright (C) 2023, Inria
3
+ * GRAPHDECO research group, https://team.inria.fr/graphdeco
4
+ * All rights reserved.
5
+ *
6
+ * This software is free for non-commercial, research and evaluation use
7
+ * under the terms of the LICENSE.md file.
8
+ *
9
+ * For inquiries contact george.drettakis@inria.fr
10
+ */
11
+
12
+ #include <torch/extension.h>
13
+ #include "spatial.h"
14
+
15
+ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
16
+ m.def("distCUDA2", &distCUDA2);
17
+ }
submodules/simple-knn/setup.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright (C) 2023, Inria
3
+ # GRAPHDECO research group, https://team.inria.fr/graphdeco
4
+ # All rights reserved.
5
+ #
6
+ # This software is free for non-commercial, research and evaluation use
7
+ # under the terms of the LICENSE.md file.
8
+ #
9
+ # For inquiries contact george.drettakis@inria.fr
10
+ #
11
+
12
+ from setuptools import setup
13
+ from torch.utils.cpp_extension import CUDAExtension, BuildExtension
14
+ import os
15
+
16
+ cxx_compiler_flags = []
17
+
18
+ if os.name == 'nt':
19
+ cxx_compiler_flags.append("/wd4624")
20
+
21
+ setup(
22
+ name="simple_knn",
23
+ ext_modules=[
24
+ CUDAExtension(
25
+ name="simple_knn._C",
26
+ sources=[
27
+ "spatial.cu",
28
+ "simple_knn.cu",
29
+ "ext.cpp"],
30
+ extra_compile_args={"nvcc": [], "cxx": cxx_compiler_flags})
31
+ ],
32
+ cmdclass={
33
+ 'build_ext': BuildExtension
34
+ }
35
+ )
submodules/simple-knn/simple_knn.cu ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ * Copyright (C) 2023, Inria
3
+ * GRAPHDECO research group, https://team.inria.fr/graphdeco
4
+ * All rights reserved.
5
+ *
6
+ * This software is free for non-commercial, research and evaluation use
7
+ * under the terms of the LICENSE.md file.
8
+ *
9
+ * For inquiries contact george.drettakis@inria.fr
10
+ */
11
+
12
+ #define BOX_SIZE 1024
13
+
14
+ #include "cuda_runtime.h"
15
+ #include "device_launch_parameters.h"
16
+ #include "simple_knn.h"
17
+ #include <cub/cub.cuh>
18
+ #include <cub/device/device_radix_sort.cuh>
19
+ #include <vector>
20
+ #include <cuda_runtime_api.h>
21
+ #include <thrust/device_vector.h>
22
+ #include <thrust/sequence.h>
23
+ #define __CUDACC__
24
+ #include <cooperative_groups.h>
25
+ #include <cooperative_groups/reduce.h>
26
+
27
+ namespace cg = cooperative_groups;
28
+
29
+ struct CustomMin
30
+ {
31
+ __device__ __forceinline__
32
+ float3 operator()(const float3& a, const float3& b) const {
33
+ return { min(a.x, b.x), min(a.y, b.y), min(a.z, b.z) };
34
+ }
35
+ };
36
+
37
+ struct CustomMax
38
+ {
39
+ __device__ __forceinline__
40
+ float3 operator()(const float3& a, const float3& b) const {
41
+ return { max(a.x, b.x), max(a.y, b.y), max(a.z, b.z) };
42
+ }
43
+ };
44
+
45
+ __host__ __device__ uint32_t prepMorton(uint32_t x)
46
+ {
47
+ x = (x | (x << 16)) & 0x030000FF;
48
+ x = (x | (x << 8)) & 0x0300F00F;
49
+ x = (x | (x << 4)) & 0x030C30C3;
50
+ x = (x | (x << 2)) & 0x09249249;
51
+ return x;
52
+ }
53
+
54
+ __host__ __device__ uint32_t coord2Morton(float3 coord, float3 minn, float3 maxx)
55
+ {
56
+ uint32_t x = prepMorton(((coord.x - minn.x) / (maxx.x - minn.x)) * ((1 << 10) - 1));
57
+ uint32_t y = prepMorton(((coord.y - minn.y) / (maxx.y - minn.y)) * ((1 << 10) - 1));
58
+ uint32_t z = prepMorton(((coord.z - minn.z) / (maxx.z - minn.z)) * ((1 << 10) - 1));
59
+
60
+ return x | (y << 1) | (z << 2);
61
+ }
62
+
63
+ __global__ void coord2Morton(int P, const float3* points, float3 minn, float3 maxx, uint32_t* codes)
64
+ {
65
+ auto idx = cg::this_grid().thread_rank();
66
+ if (idx >= P)
67
+ return;
68
+
69
+ codes[idx] = coord2Morton(points[idx], minn, maxx);
70
+ }
71
+
72
+ struct MinMax
73
+ {
74
+ float3 minn;
75
+ float3 maxx;
76
+ };
77
+
78
+ __global__ void boxMinMax(uint32_t P, float3* points, uint32_t* indices, MinMax* boxes)
79
+ {
80
+ auto idx = cg::this_grid().thread_rank();
81
+
82
+ MinMax me;
83
+ if (idx < P)
84
+ {
85
+ me.minn = points[indices[idx]];
86
+ me.maxx = points[indices[idx]];
87
+ }
88
+ else
89
+ {
90
+ me.minn = { FLT_MAX, FLT_MAX, FLT_MAX };
91
+ me.maxx = { -FLT_MAX,-FLT_MAX,-FLT_MAX };
92
+ }
93
+
94
+ __shared__ MinMax redResult[BOX_SIZE];
95
+
96
+ for (int off = BOX_SIZE / 2; off >= 1; off /= 2)
97
+ {
98
+ if (threadIdx.x < 2 * off)
99
+ redResult[threadIdx.x] = me;
100
+ __syncthreads();
101
+
102
+ if (threadIdx.x < off)
103
+ {
104
+ MinMax other = redResult[threadIdx.x + off];
105
+ me.minn.x = min(me.minn.x, other.minn.x);
106
+ me.minn.y = min(me.minn.y, other.minn.y);
107
+ me.minn.z = min(me.minn.z, other.minn.z);
108
+ me.maxx.x = max(me.maxx.x, other.maxx.x);
109
+ me.maxx.y = max(me.maxx.y, other.maxx.y);
110
+ me.maxx.z = max(me.maxx.z, other.maxx.z);
111
+ }
112
+ __syncthreads();
113
+ }
114
+
115
+ if (threadIdx.x == 0)
116
+ boxes[blockIdx.x] = me;
117
+ }
118
+
119
+ __device__ __host__ float distBoxPoint(const MinMax& box, const float3& p)
120
+ {
121
+ float3 diff = { 0, 0, 0 };
122
+ if (p.x < box.minn.x || p.x > box.maxx.x)
123
+ diff.x = min(abs(p.x - box.minn.x), abs(p.x - box.maxx.x));
124
+ if (p.y < box.minn.y || p.y > box.maxx.y)
125
+ diff.y = min(abs(p.y - box.minn.y), abs(p.y - box.maxx.y));
126
+ if (p.z < box.minn.z || p.z > box.maxx.z)
127
+ diff.z = min(abs(p.z - box.minn.z), abs(p.z - box.maxx.z));
128
+ return diff.x * diff.x + diff.y * diff.y + diff.z * diff.z;
129
+ }
130
+
131
+ template<int K>
132
+ __device__ void updateKBest(const float3& ref, const float3& point, float* knn)
133
+ {
134
+ float3 d = { point.x - ref.x, point.y - ref.y, point.z - ref.z };
135
+ float dist = d.x * d.x + d.y * d.y + d.z * d.z;
136
+ for (int j = 0; j < K; j++)
137
+ {
138
+ if (knn[j] > dist)
139
+ {
140
+ float t = knn[j];
141
+ knn[j] = dist;
142
+ dist = t;
143
+ }
144
+ }
145
+ }
146
+
147
+ __global__ void boxMeanDist(uint32_t P, float3* points, uint32_t* indices, MinMax* boxes, float* dists)
148
+ {
149
+ int idx = cg::this_grid().thread_rank();
150
+ if (idx >= P)
151
+ return;
152
+
153
+ float3 point = points[indices[idx]];
154
+ float best[3] = { FLT_MAX, FLT_MAX, FLT_MAX };
155
+
156
+ for (int i = max(0, idx - 3); i <= min(P - 1, idx + 3); i++)
157
+ {
158
+ if (i == idx)
159
+ continue;
160
+ updateKBest<3>(point, points[indices[i]], best);
161
+ }
162
+
163
+ float reject = best[2];
164
+ best[0] = FLT_MAX;
165
+ best[1] = FLT_MAX;
166
+ best[2] = FLT_MAX;
167
+
168
+ for (int b = 0; b < (P + BOX_SIZE - 1) / BOX_SIZE; b++)
169
+ {
170
+ MinMax box = boxes[b];
171
+ float dist = distBoxPoint(box, point);
172
+ if (dist > reject || dist > best[2])
173
+ continue;
174
+
175
+ for (int i = b * BOX_SIZE; i < min(P, (b + 1) * BOX_SIZE); i++)
176
+ {
177
+ if (i == idx)
178
+ continue;
179
+ updateKBest<3>(point, points[indices[i]], best);
180
+ }
181
+ }
182
+ dists[indices[idx]] = (best[0] + best[1] + best[2]) / 3.0f;
183
+ }
184
+
185
+ void SimpleKNN::knn(int P, float3* points, float* meanDists)
186
+ {
187
+ float3* result;
188
+ cudaMalloc(&result, sizeof(float3));
189
+ size_t temp_storage_bytes;
190
+
191
+ float3 init = { 0, 0, 0 }, minn, maxx;
192
+
193
+ cub::DeviceReduce::Reduce(nullptr, temp_storage_bytes, points, result, P, CustomMin(), init);
194
+ thrust::device_vector<char> temp_storage(temp_storage_bytes);
195
+
196
+ cub::DeviceReduce::Reduce(temp_storage.data().get(), temp_storage_bytes, points, result, P, CustomMin(), init);
197
+ cudaMemcpy(&minn, result, sizeof(float3), cudaMemcpyDeviceToHost);
198
+
199
+ cub::DeviceReduce::Reduce(temp_storage.data().get(), temp_storage_bytes, points, result, P, CustomMax(), init);
200
+ cudaMemcpy(&maxx, result, sizeof(float3), cudaMemcpyDeviceToHost);
201
+
202
+ thrust::device_vector<uint32_t> morton(P);
203
+ thrust::device_vector<uint32_t> morton_sorted(P);
204
+ coord2Morton << <(P + 255) / 256, 256 >> > (P, points, minn, maxx, morton.data().get());
205
+
206
+ thrust::device_vector<uint32_t> indices(P);
207
+ thrust::sequence(indices.begin(), indices.end());
208
+ thrust::device_vector<uint32_t> indices_sorted(P);
209
+
210
+ cub::DeviceRadixSort::SortPairs(nullptr, temp_storage_bytes, morton.data().get(), morton_sorted.data().get(), indices.data().get(), indices_sorted.data().get(), P);
211
+ temp_storage.resize(temp_storage_bytes);
212
+
213
+ cub::DeviceRadixSort::SortPairs(temp_storage.data().get(), temp_storage_bytes, morton.data().get(), morton_sorted.data().get(), indices.data().get(), indices_sorted.data().get(), P);
214
+
215
+ uint32_t num_boxes = (P + BOX_SIZE - 1) / BOX_SIZE;
216
+ thrust::device_vector<MinMax> boxes(num_boxes);
217
+ boxMinMax << <num_boxes, BOX_SIZE >> > (P, points, indices_sorted.data().get(), boxes.data().get());
218
+ boxMeanDist << <num_boxes, BOX_SIZE >> > (P, points, indices_sorted.data().get(), boxes.data().get(), meanDists);
219
+
220
+ cudaFree(result);
221
+ }
submodules/simple-knn/simple_knn.egg-info/PKG-INFO ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ Metadata-Version: 2.1
2
+ Name: simple-knn
3
+ Version: 0.0.0
submodules/simple-knn/simple_knn.egg-info/SOURCES.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ ext.cpp
2
+ setup.py
3
+ simple_knn.cu
4
+ spatial.cu
5
+ simple_knn.egg-info/PKG-INFO
6
+ simple_knn.egg-info/SOURCES.txt
7
+ simple_knn.egg-info/dependency_links.txt
8
+ simple_knn.egg-info/top_level.txt
submodules/simple-knn/simple_knn.egg-info/dependency_links.txt ADDED
@@ -0,0 +1 @@
 
 
1
+
submodules/simple-knn/simple_knn.egg-info/top_level.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ simple_knn
submodules/simple-knn/simple_knn.h ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ * Copyright (C) 2023, Inria
3
+ * GRAPHDECO research group, https://team.inria.fr/graphdeco
4
+ * All rights reserved.
5
+ *
6
+ * This software is free for non-commercial, research and evaluation use
7
+ * under the terms of the LICENSE.md file.
8
+ *
9
+ * For inquiries contact george.drettakis@inria.fr
10
+ */
11
+
12
+ #ifndef SIMPLEKNN_H_INCLUDED
13
+ #define SIMPLEKNN_H_INCLUDED
14
+
15
+ class SimpleKNN
16
+ {
17
+ public:
18
+ static void knn(int P, float3* points, float* meanDists);
19
+ };
20
+
21
+ #endif
submodules/simple-knn/simple_knn/.gitkeep ADDED
File without changes
submodules/simple-knn/spatial.cu ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ * Copyright (C) 2023, Inria
3
+ * GRAPHDECO research group, https://team.inria.fr/graphdeco
4
+ * All rights reserved.
5
+ *
6
+ * This software is free for non-commercial, research and evaluation use
7
+ * under the terms of the LICENSE.md file.
8
+ *
9
+ * For inquiries contact george.drettakis@inria.fr
10
+ */
11
+
12
+ #include "spatial.h"
13
+ #include "simple_knn.h"
14
+
15
+ torch::Tensor
16
+ distCUDA2(const torch::Tensor& points)
17
+ {
18
+ const int P = points.size(0);
19
+
20
+ auto float_opts = points.options().dtype(torch::kFloat32);
21
+ torch::Tensor means = torch::full({P}, 0.0, float_opts);
22
+
23
+ SimpleKNN::knn(P, (float3*)points.contiguous().data<float>(), means.contiguous().data<float>());
24
+
25
+ return means;
26
+ }
submodules/simple-knn/spatial.h ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ * Copyright (C) 2023, Inria
3
+ * GRAPHDECO research group, https://team.inria.fr/graphdeco
4
+ * All rights reserved.
5
+ *
6
+ * This software is free for non-commercial, research and evaluation use
7
+ * under the terms of the LICENSE.md file.
8
+ *
9
+ * For inquiries contact george.drettakis@inria.fr
10
+ */
11
+
12
+ #include <torch/extension.h>
13
+
14
+ torch::Tensor distCUDA2(const torch::Tensor& points);