|
|
|
|
|
import os |
|
import sys |
|
import unittest |
|
from timeit import default_timer as timer |
|
|
|
from langchain.callbacks.base import BaseCallbackHandler |
|
from langchain.schema import HumanMessage |
|
|
|
from app_modules.init import app_init |
|
from app_modules.llm_chat_chain import ChatChain |
|
from app_modules.llm_loader import LLMLoader |
|
from app_modules.utils import get_device_types, print_llm_response |
|
|
|
|
|
class TestLLMLoader(unittest.TestCase): |
|
question = os.environ.get("CHAT_QUESTION") |
|
|
|
def run_test_case(self, llm_model_type, query): |
|
n_threds = int(os.environ.get("NUMBER_OF_CPU_CORES") or "4") |
|
|
|
hf_embeddings_device_type, hf_pipeline_device_type = get_device_types() |
|
print(f"hf_embeddings_device_type: {hf_embeddings_device_type}") |
|
print(f"hf_pipeline_device_type: {hf_pipeline_device_type}") |
|
|
|
llm_loader = LLMLoader(llm_model_type) |
|
start = timer() |
|
llm_loader.init( |
|
n_threds=n_threds, hf_pipeline_device_type=hf_pipeline_device_type |
|
) |
|
end = timer() |
|
print(f"Model loaded in {end - start:.3f}s") |
|
|
|
result = llm_loader.llm( |
|
[HumanMessage(content=query)] if llm_model_type == "openai" else query |
|
) |
|
end2 = timer() |
|
print(f"Inference completed in {end2 - end:.3f}s") |
|
print(result) |
|
|
|
def test_openai(self): |
|
self.run_test_case("openai", self.question) |
|
|
|
def test_llamacpp(self): |
|
self.run_test_case("llamacpp", self.question) |
|
|
|
def test_gpt4all_j(self): |
|
self.run_test_case("gpt4all-j", self.question) |
|
|
|
def test_huggingface(self): |
|
self.run_test_case("huggingface", self.question) |
|
|
|
def test_hftgi(self): |
|
self.run_test_case("hftgi", self.question) |
|
|
|
|
|
class TestChatChain(unittest.TestCase): |
|
question = os.environ.get("CHAT_QUESTION") |
|
|
|
def run_test_case(self, llm_model_type, query): |
|
n_threds = int(os.environ.get("NUMBER_OF_CPU_CORES") or "4") |
|
|
|
hf_embeddings_device_type, hf_pipeline_device_type = get_device_types() |
|
print(f"hf_embeddings_device_type: {hf_embeddings_device_type}") |
|
print(f"hf_pipeline_device_type: {hf_pipeline_device_type}") |
|
|
|
llm_loader = LLMLoader(llm_model_type) |
|
start = timer() |
|
llm_loader.init( |
|
n_threds=n_threds, hf_pipeline_device_type=hf_pipeline_device_type |
|
) |
|
chat = ChatChain(llm_loader) |
|
end = timer() |
|
print(f"Model loaded in {end - start:.3f}s") |
|
|
|
inputs = {"question": query} |
|
result = chat.call_chain(inputs, None) |
|
end2 = timer() |
|
print(f"Inference completed in {end2 - end:.3f}s") |
|
print(result) |
|
|
|
inputs = {"question": "how many people?"} |
|
result = chat.call_chain(inputs, None) |
|
end3 = timer() |
|
print(f"Inference completed in {end3 - end2:.3f}s") |
|
print(result) |
|
|
|
def test_openai(self): |
|
self.run_test_case("openai", self.question) |
|
|
|
def test_llamacpp(self): |
|
self.run_test_case("llamacpp", self.question) |
|
|
|
def test_gpt4all_j(self): |
|
self.run_test_case("gpt4all-j", self.question) |
|
|
|
def test_huggingface(self): |
|
self.run_test_case("huggingface", self.question) |
|
|
|
def test_hftgi(self): |
|
self.run_test_case("hftgi", self.question) |
|
|
|
|
|
class TestQAChain(unittest.TestCase): |
|
qa_chain: any |
|
question = os.environ.get("QA_QUESTION") |
|
|
|
def run_test_case(self, llm_model_type, query): |
|
start = timer() |
|
os.environ["LLM_MODEL_TYPE"] = llm_model_type |
|
qa_chain = app_init()[1] |
|
end = timer() |
|
print(f"App initialized in {end - start:.3f}s") |
|
|
|
chat_history = [] |
|
inputs = {"question": query, "chat_history": chat_history} |
|
result = qa_chain.call_chain(inputs, None) |
|
end2 = timer() |
|
print(f"Inference completed in {end2 - end:.3f}s") |
|
print_llm_response(result) |
|
|
|
chat_history.append((query, result["answer"])) |
|
|
|
inputs = {"question": "tell me more", "chat_history": chat_history} |
|
result = qa_chain.call_chain(inputs, None) |
|
end3 = timer() |
|
print(f"Inference completed in {end3 - end2:.3f}s") |
|
print_llm_response(result) |
|
|
|
def test_openai(self): |
|
self.run_test_case("openai", self.question) |
|
|
|
def test_llamacpp(self): |
|
self.run_test_case("llamacpp", self.question) |
|
|
|
def test_gpt4all_j(self): |
|
self.run_test_case("gpt4all-j", self.question) |
|
|
|
def test_huggingface(self): |
|
self.run_test_case("huggingface", self.question) |
|
|
|
def test_hftgi(self): |
|
self.run_test_case("hftgi", self.question) |
|
|
|
|
|
def chat(): |
|
start = timer() |
|
llm_loader = app_init()[0] |
|
end = timer() |
|
print(f"Model loaded in {end - start:.3f}s") |
|
|
|
chat_chain = ChatChain(llm_loader) |
|
chat_history = [] |
|
|
|
chat_start = timer() |
|
|
|
while True: |
|
query = input("Please enter your question: ") |
|
query = query.strip() |
|
if query.lower() == "exit": |
|
break |
|
|
|
print("\nQuestion: " + query) |
|
|
|
start = timer() |
|
result = chat_chain.call_chain( |
|
{"question": query, "chat_history": chat_history}, None |
|
) |
|
end = timer() |
|
print(f"Completed in {end - start:.3f}s") |
|
|
|
chat_history.append((query, result["text"])) |
|
|
|
chat_end = timer() |
|
print(f"Total time used: {chat_end - chat_start:.3f}s") |
|
|
|
|
|
if __name__ == "__main__": |
|
if len(sys.argv) > 1 and sys.argv[1] == "chat": |
|
chat() |
|
else: |
|
unittest.main() |
|
|