Spaces:
Running
Running
updated to give entire exemplar question and answer choices
Browse files. Generate All Explanations
For each exemplar, we need to AI-generate:
β
Explanation for WHY each choice (A-E) is correct/wrong
β
New similar question
β
Explanations for all choices in the new question
This means 2 AI calls per exemplar:
Call 1: "Explain why each answer choice is right/wrong"
Call 2: "Generate a similar question with explanations"
For 3 exemplars = 6 AI calls = ~30 seconds total
My Plan:
Fix API to return FULL untruncated exemplar text
Add function to call AI (GPT-4/Claude) to generate:
Choice explanations for original
New question + choice explanations
Format everything as plain text (not JSON)
Return the complete formatted output
app.py
CHANGED
|
@@ -7,6 +7,9 @@ from sentence_transformers import SentenceTransformer
|
|
| 7 |
import gradio as gr
|
| 8 |
from fastapi import FastAPI
|
| 9 |
from pydantic import BaseModel
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Extract and load database
|
| 12 |
DB_PATH = "./medqa_db"
|
|
@@ -25,15 +28,17 @@ print("π§ Loading MedCPT model...")
|
|
| 25 |
model = SentenceTransformer('ncbi/MedCPT-Query-Encoder')
|
| 26 |
print("β
Model ready")
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
# ============================================================================
|
| 29 |
-
#
|
| 30 |
# ============================================================================
|
| 31 |
def deduplicate_results(results, target_count):
|
| 32 |
-
"""
|
| 33 |
-
Remove duplicate questions based on:
|
| 34 |
-
1. High text similarity (>0.92) - catches near-exact duplicates
|
| 35 |
-
2. Same answer + moderate similarity (>0.85) - catches conceptual duplicates
|
| 36 |
-
"""
|
| 37 |
if not results['documents'][0]:
|
| 38 |
return results
|
| 39 |
|
|
@@ -47,32 +52,24 @@ def deduplicate_results(results, target_count):
|
|
| 47 |
is_duplicate = False
|
| 48 |
current_answer = metadatas[i].get('answer', '')
|
| 49 |
|
| 50 |
-
# Compare to already-selected results
|
| 51 |
for j in selected_indices:
|
| 52 |
selected_answer = metadatas[j].get('answer', '')
|
| 53 |
-
|
| 54 |
-
# Calculate similarity between questions
|
| 55 |
-
# Lower distance = higher similarity
|
| 56 |
dist_diff = abs(distances[i] - distances[j])
|
| 57 |
|
| 58 |
-
|
| 59 |
-
if dist_diff < 0.08: # Roughly equivalent to >0.92 similarity
|
| 60 |
is_duplicate = True
|
| 61 |
break
|
| 62 |
|
| 63 |
-
|
| 64 |
-
if current_answer == selected_answer and dist_diff < 0.15: # ~0.85 similarity
|
| 65 |
is_duplicate = True
|
| 66 |
break
|
| 67 |
|
| 68 |
if not is_duplicate:
|
| 69 |
selected_indices.append(i)
|
| 70 |
|
| 71 |
-
# Stop when we have enough unique results
|
| 72 |
if len(selected_indices) >= target_count:
|
| 73 |
break
|
| 74 |
|
| 75 |
-
# Return filtered results in same format
|
| 76 |
return {
|
| 77 |
'documents': [[documents[i] for i in selected_indices]],
|
| 78 |
'metadatas': [[metadatas[i] for i in selected_indices]],
|
|
@@ -81,18 +78,16 @@ def deduplicate_results(results, target_count):
|
|
| 81 |
}
|
| 82 |
|
| 83 |
# ============================================================================
|
| 84 |
-
#
|
| 85 |
# ============================================================================
|
| 86 |
def search(query, num_results=3, source_filter=None):
|
| 87 |
emb = model.encode(query).tolist()
|
| 88 |
|
| 89 |
-
# Apply source filter if specified
|
| 90 |
where_clause = None
|
| 91 |
if source_filter and source_filter != "all":
|
| 92 |
where_clause = {"source": source_filter}
|
| 93 |
|
| 94 |
-
|
| 95 |
-
fetch_count = min(num_results * 4, 50) # Fetch 4x but cap at 50
|
| 96 |
|
| 97 |
results = collection.query(
|
| 98 |
query_embeddings=[emb],
|
|
@@ -100,155 +95,263 @@ def search(query, num_results=3, source_filter=None):
|
|
| 100 |
where=where_clause
|
| 101 |
)
|
| 102 |
|
| 103 |
-
# Deduplicate and return only requested number
|
| 104 |
return deduplicate_results(results, num_results)
|
| 105 |
|
| 106 |
-
#
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
|
|
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
source = r['metadatas'][0][i].get('source', 'unknown')
|
| 121 |
-
distance = r['distances'][0][i]
|
| 122 |
-
similarity = 1 - distance
|
| 123 |
-
|
| 124 |
-
# Source emoji
|
| 125 |
-
if source == 'medgemini':
|
| 126 |
-
source_icon = "π¬"
|
| 127 |
-
source_name = "Med-Gemini"
|
| 128 |
-
elif source.startswith('medqa_'):
|
| 129 |
-
source_icon = "π"
|
| 130 |
-
split = source.replace('medqa_', '').upper()
|
| 131 |
-
source_name = f"MedQA {split}"
|
| 132 |
-
else:
|
| 133 |
-
source_icon = "π"
|
| 134 |
-
source_name = source.upper()
|
| 135 |
-
|
| 136 |
-
out += f"\n{'='*70}\n"
|
| 137 |
-
out += f"{source_icon} Result {i+1} | {source_name} | Similarity: {similarity:.3f}\n"
|
| 138 |
-
out += f"{'='*70}\n\n"
|
| 139 |
-
out += r['documents'][0][i]
|
| 140 |
-
|
| 141 |
-
# Show answer
|
| 142 |
-
answer = r['metadatas'][0][i].get('answer', 'N/A')
|
| 143 |
-
out += f"\n\nβ
CORRECT ANSWER: {answer}\n"
|
| 144 |
-
|
| 145 |
-
# Show explanation if available (Med-Gemini)
|
| 146 |
-
explanation = r['metadatas'][0][i].get('explanation', '')
|
| 147 |
-
if explanation and explanation.strip():
|
| 148 |
-
out += f"\nπ‘ EXPLANATION:\n{explanation}\n"
|
| 149 |
|
| 150 |
-
|
| 151 |
|
| 152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
-
|
| 155 |
-
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
-
#
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
|
|
|
| 161 |
|
| 162 |
-
|
| 163 |
-
Uses medical-specific embeddings (MedCPT) for accurate retrieval.
|
| 164 |
|
| 165 |
-
|
| 166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
-
|
| 169 |
-
with gr.Column(scale=3):
|
| 170 |
-
query_input = gr.Textbox(
|
| 171 |
-
label="Medical Query",
|
| 172 |
-
placeholder="e.g., hyponatremia, myocardial infarction, diabetes management...",
|
| 173 |
-
lines=2
|
| 174 |
-
)
|
| 175 |
-
with gr.Column(scale=1):
|
| 176 |
-
num_results = gr.Slider(
|
| 177 |
-
minimum=1,
|
| 178 |
-
maximum=10,
|
| 179 |
-
value=3,
|
| 180 |
-
step=1,
|
| 181 |
-
label="Number of Results"
|
| 182 |
-
)
|
| 183 |
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
|
| 191 |
-
|
| 192 |
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
)
|
| 198 |
|
| 199 |
-
|
| 200 |
-
fn=ui_search,
|
| 201 |
-
inputs=[query_input, num_results, source_filter],
|
| 202 |
-
outputs=output
|
| 203 |
-
)
|
| 204 |
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
|
| 211 |
-
|
| 212 |
-
### π Database Info
|
| 213 |
|
| 214 |
-
|
| 215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
|
| 217 |
-
|
| 218 |
-
|
| 219 |
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
)
|
| 229 |
|
| 230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
app = FastAPI()
|
| 232 |
|
| 233 |
class SearchRequest(BaseModel):
|
| 234 |
query: str
|
| 235 |
num_results: int = 3
|
| 236 |
source_filter: str = None
|
|
|
|
| 237 |
|
| 238 |
@app.post("/search_medqa")
|
| 239 |
def api_search(req: SearchRequest):
|
|
|
|
|
|
|
|
|
|
| 240 |
r = search(req.query, req.num_results, req.source_filter)
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
"
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
app = gr.mount_gradio_app(app, demo, path="/")
|
| 250 |
|
| 251 |
-
# Launch
|
| 252 |
if __name__ == "__main__":
|
| 253 |
import uvicorn
|
| 254 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
| 7 |
import gradio as gr
|
| 8 |
from fastapi import FastAPI
|
| 9 |
from pydantic import BaseModel
|
| 10 |
+
import re
|
| 11 |
+
import anthropic # You'll need: pip install anthropic
|
| 12 |
+
# OR if using OpenAI: import openai
|
| 13 |
|
| 14 |
# Extract and load database
|
| 15 |
DB_PATH = "./medqa_db"
|
|
|
|
| 28 |
model = SentenceTransformer('ncbi/MedCPT-Query-Encoder')
|
| 29 |
print("β
Model ready")
|
| 30 |
|
| 31 |
+
# Initialize AI client (choose one)
|
| 32 |
+
# Option 1: Claude
|
| 33 |
+
claude_client = anthropic.Anthropic(api_key=os.environ.get("ANTHROPIC_API_KEY"))
|
| 34 |
+
|
| 35 |
+
# Option 2: OpenAI (uncomment if using)
|
| 36 |
+
# openai.api_key = os.environ.get("OPENAI_API_KEY")
|
| 37 |
+
|
| 38 |
# ============================================================================
|
| 39 |
+
# Deduplication function (same as before)
|
| 40 |
# ============================================================================
|
| 41 |
def deduplicate_results(results, target_count):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
if not results['documents'][0]:
|
| 43 |
return results
|
| 44 |
|
|
|
|
| 52 |
is_duplicate = False
|
| 53 |
current_answer = metadatas[i].get('answer', '')
|
| 54 |
|
|
|
|
| 55 |
for j in selected_indices:
|
| 56 |
selected_answer = metadatas[j].get('answer', '')
|
|
|
|
|
|
|
|
|
|
| 57 |
dist_diff = abs(distances[i] - distances[j])
|
| 58 |
|
| 59 |
+
if dist_diff < 0.08:
|
|
|
|
| 60 |
is_duplicate = True
|
| 61 |
break
|
| 62 |
|
| 63 |
+
if current_answer == selected_answer and dist_diff < 0.15:
|
|
|
|
| 64 |
is_duplicate = True
|
| 65 |
break
|
| 66 |
|
| 67 |
if not is_duplicate:
|
| 68 |
selected_indices.append(i)
|
| 69 |
|
|
|
|
| 70 |
if len(selected_indices) >= target_count:
|
| 71 |
break
|
| 72 |
|
|
|
|
| 73 |
return {
|
| 74 |
'documents': [[documents[i] for i in selected_indices]],
|
| 75 |
'metadatas': [[metadatas[i] for i in selected_indices]],
|
|
|
|
| 78 |
}
|
| 79 |
|
| 80 |
# ============================================================================
|
| 81 |
+
# Search function (same as before)
|
| 82 |
# ============================================================================
|
| 83 |
def search(query, num_results=3, source_filter=None):
|
| 84 |
emb = model.encode(query).tolist()
|
| 85 |
|
|
|
|
| 86 |
where_clause = None
|
| 87 |
if source_filter and source_filter != "all":
|
| 88 |
where_clause = {"source": source_filter}
|
| 89 |
|
| 90 |
+
fetch_count = min(num_results * 4, 50)
|
|
|
|
| 91 |
|
| 92 |
results = collection.query(
|
| 93 |
query_embeddings=[emb],
|
|
|
|
| 95 |
where=where_clause
|
| 96 |
)
|
| 97 |
|
|
|
|
| 98 |
return deduplicate_results(results, num_results)
|
| 99 |
|
| 100 |
+
# ============================================================================
|
| 101 |
+
# NEW: Parser to extract question structure
|
| 102 |
+
# ============================================================================
|
| 103 |
+
def parse_question_document(doc_text, metadata):
|
| 104 |
+
"""Extract question and choices from document text."""
|
| 105 |
|
| 106 |
+
lines = doc_text.split('\n')
|
| 107 |
+
question_lines = []
|
| 108 |
+
options_started = False
|
| 109 |
+
options = {}
|
| 110 |
+
|
| 111 |
+
for line in lines:
|
| 112 |
+
line = line.strip()
|
| 113 |
+
if not line:
|
| 114 |
+
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
+
option_match = re.match(r'^([A-E])[\.\)]\s*(.+)$', line)
|
| 117 |
|
| 118 |
+
if option_match:
|
| 119 |
+
options_started = True
|
| 120 |
+
letter = option_match.group(1)
|
| 121 |
+
text = option_match.group(2).strip()
|
| 122 |
+
options[letter] = text
|
| 123 |
+
elif not options_started:
|
| 124 |
+
question_lines.append(line)
|
| 125 |
+
|
| 126 |
+
question_text = ' '.join(question_lines).strip()
|
| 127 |
+
|
| 128 |
+
answer_idx = metadata.get('answer_idx', 'N/A')
|
| 129 |
|
| 130 |
+
return {
|
| 131 |
+
'question': question_text,
|
| 132 |
+
'choices': options,
|
| 133 |
+
'correct_answer': answer_idx
|
| 134 |
+
}
|
| 135 |
|
| 136 |
+
# ============================================================================
|
| 137 |
+
# NEW: AI generation functions
|
| 138 |
+
# ============================================================================
|
| 139 |
+
def generate_choice_explanations(question, choices, correct_answer):
|
| 140 |
+
"""Generate explanations for why each choice is correct/wrong."""
|
| 141 |
|
| 142 |
+
choices_text = '\n'.join([f"{k}. {v}" for k, v in choices.items()])
|
|
|
|
| 143 |
|
| 144 |
+
prompt = f"""You are a medical educator. For this USMLE-style question, explain why EACH answer choice is correct or incorrect.
|
| 145 |
+
|
| 146 |
+
QUESTION:
|
| 147 |
+
{question}
|
| 148 |
+
|
| 149 |
+
ANSWER CHOICES:
|
| 150 |
+
{choices_text}
|
| 151 |
+
|
| 152 |
+
CORRECT ANSWER: {correct_answer}
|
| 153 |
+
|
| 154 |
+
Provide a 1-2 sentence explanation for EACH choice (A through E) explaining why it is correct or incorrect. Format as:
|
| 155 |
+
|
| 156 |
+
A. [Choice text] - [Explanation]
|
| 157 |
+
B. [Choice text] - [Explanation]
|
| 158 |
+
C. [Choice text] - [Explanation]
|
| 159 |
+
D. [Choice text] - [Explanation]
|
| 160 |
+
E. [Choice text] - [Explanation]"""
|
| 161 |
+
|
| 162 |
+
# Using Claude
|
| 163 |
+
message = claude_client.messages.create(
|
| 164 |
+
model="claude-sonnet-4-20250514",
|
| 165 |
+
max_tokens=1000,
|
| 166 |
+
messages=[{"role": "user", "content": prompt}]
|
| 167 |
+
)
|
| 168 |
|
| 169 |
+
return message.content[0].text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
+
# OR using OpenAI (uncomment if using):
|
| 172 |
+
# response = openai.ChatCompletion.create(
|
| 173 |
+
# model="gpt-4",
|
| 174 |
+
# messages=[{"role": "user", "content": prompt}],
|
| 175 |
+
# max_tokens=1000
|
| 176 |
+
# )
|
| 177 |
+
# return response.choices[0].message.content
|
| 178 |
+
|
| 179 |
+
def generate_similar_question(original_question, choices, correct_answer):
|
| 180 |
+
"""Generate a new question based on the exemplar."""
|
| 181 |
|
| 182 |
+
choices_text = '\n'.join([f"{k}. {v}" for k, v in choices.items()])
|
| 183 |
|
| 184 |
+
prompt = f"""You are a medical educator. Based on this USMLE-style question, create a NEW similar question that tests the SAME medical concept but with a different clinical scenario.
|
| 185 |
+
|
| 186 |
+
ORIGINAL QUESTION:
|
| 187 |
+
{question}
|
| 188 |
+
|
| 189 |
+
ANSWER CHOICES:
|
| 190 |
+
{choices_text}
|
| 191 |
+
|
| 192 |
+
CORRECT ANSWER: {correct_answer}
|
| 193 |
+
|
| 194 |
+
Create a NEW question that:
|
| 195 |
+
1. Tests the same medical concept
|
| 196 |
+
2. Uses a different patient scenario
|
| 197 |
+
3. Has 5 answer choices (A-E)
|
| 198 |
+
4. Includes explanations for why each choice is correct/incorrect
|
| 199 |
+
|
| 200 |
+
Format your response EXACTLY as:
|
| 201 |
+
|
| 202 |
+
NEW QUESTION:
|
| 203 |
+
[Your new question text]
|
| 204 |
+
|
| 205 |
+
ANSWER CHOICES:
|
| 206 |
+
A. [Choice A]
|
| 207 |
+
B. [Choice B]
|
| 208 |
+
C. [Choice C]
|
| 209 |
+
D. [Choice D]
|
| 210 |
+
E. [Choice E]
|
| 211 |
+
|
| 212 |
+
CORRECT ANSWER: [Letter]
|
| 213 |
+
|
| 214 |
+
EXPLANATIONS:
|
| 215 |
+
A. [Choice A text] - [Explanation]
|
| 216 |
+
B. [Choice B text] - [Explanation]
|
| 217 |
+
C. [Choice C text] - [Explanation]
|
| 218 |
+
D. [Choice D text] - [Explanation]
|
| 219 |
+
E. [Choice E text] - [Explanation]"""
|
| 220 |
+
|
| 221 |
+
# Using Claude
|
| 222 |
+
message = claude_client.messages.create(
|
| 223 |
+
model="claude-sonnet-4-20250514",
|
| 224 |
+
max_tokens=2000,
|
| 225 |
+
messages=[{"role": "user", "content": prompt}]
|
| 226 |
)
|
| 227 |
|
| 228 |
+
return message.content[0].text
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
+
# OR using OpenAI:
|
| 231 |
+
# response = openai.ChatCompletion.create(
|
| 232 |
+
# model="gpt-4",
|
| 233 |
+
# messages=[{"role": "user", "content": prompt}],
|
| 234 |
+
# max_tokens=2000
|
| 235 |
+
# )
|
| 236 |
+
# return response.choices[0].message.content
|
| 237 |
+
|
| 238 |
+
# ============================================================================
|
| 239 |
+
# NEW: Format complete output
|
| 240 |
+
# ============================================================================
|
| 241 |
+
def format_complete_output(exemplar_num, parsed, original_explanation, choice_explanations, new_question_text):
|
| 242 |
+
"""Format everything into readable plain text."""
|
| 243 |
|
| 244 |
+
choices_text = '\n'.join([f"{k}. {v}" for k, v in parsed['choices'].items()])
|
|
|
|
| 245 |
|
| 246 |
+
output = f"""{'='*80}
|
| 247 |
+
EXEMPLAR {exemplar_num}
|
| 248 |
+
{'='*80}
|
| 249 |
+
|
| 250 |
+
ORIGINAL QUESTION:
|
| 251 |
+
{parsed['question']}
|
| 252 |
+
|
| 253 |
+
ANSWER CHOICES:
|
| 254 |
+
{choices_text}
|
| 255 |
+
|
| 256 |
+
CORRECT ANSWER: {parsed['correct_answer']}
|
| 257 |
+
|
| 258 |
+
EXPLANATION FOR EACH CHOICE:
|
| 259 |
+
{choice_explanations}
|
| 260 |
+
"""
|
| 261 |
|
| 262 |
+
if original_explanation:
|
| 263 |
+
output += f"\nORIGINAL EXPLANATION FROM DATABASE:\n{original_explanation}\n"
|
| 264 |
|
| 265 |
+
output += f"""
|
| 266 |
+
{'-'*80}
|
| 267 |
+
AI-GENERATED SIMILAR QUESTION:
|
| 268 |
+
{'-'*80}
|
| 269 |
+
|
| 270 |
+
{new_question_text}
|
| 271 |
+
|
| 272 |
+
{'='*80}
|
|
|
|
| 273 |
|
| 274 |
+
"""
|
| 275 |
+
|
| 276 |
+
return output
|
| 277 |
+
|
| 278 |
+
# ============================================================================
|
| 279 |
+
# MODIFIED: API endpoint with full generation
|
| 280 |
+
# ============================================================================
|
| 281 |
app = FastAPI()
|
| 282 |
|
| 283 |
class SearchRequest(BaseModel):
|
| 284 |
query: str
|
| 285 |
num_results: int = 3
|
| 286 |
source_filter: str = None
|
| 287 |
+
generate_ai: bool = True # Option to skip AI generation for faster response
|
| 288 |
|
| 289 |
@app.post("/search_medqa")
|
| 290 |
def api_search(req: SearchRequest):
|
| 291 |
+
"""Search and return complete formatted exemplars with AI-generated content."""
|
| 292 |
+
|
| 293 |
+
print(f"π Searching for: {req.query}")
|
| 294 |
r = search(req.query, req.num_results, req.source_filter)
|
| 295 |
+
|
| 296 |
+
if not r['documents'][0]:
|
| 297 |
+
return {"output": "No results found."}
|
| 298 |
+
|
| 299 |
+
complete_output = f"SEARCH QUERY: {req.query}\n"
|
| 300 |
+
complete_output += f"FOUND {len(r['documents'][0])} EXEMPLARS\n\n"
|
| 301 |
+
|
| 302 |
+
for i in range(len(r['documents'][0])):
|
| 303 |
+
print(f"Processing exemplar {i+1}...")
|
| 304 |
+
|
| 305 |
+
doc_text = r['documents'][0][i]
|
| 306 |
+
metadata = r['metadatas'][0][i]
|
| 307 |
+
|
| 308 |
+
# Parse the exemplar
|
| 309 |
+
parsed = parse_question_document(doc_text, metadata)
|
| 310 |
+
original_explanation = metadata.get('explanation', '')
|
| 311 |
+
|
| 312 |
+
if req.generate_ai:
|
| 313 |
+
# Generate AI content
|
| 314 |
+
print(f" Generating choice explanations...")
|
| 315 |
+
choice_explanations = generate_choice_explanations(
|
| 316 |
+
parsed['question'],
|
| 317 |
+
parsed['choices'],
|
| 318 |
+
parsed['correct_answer']
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
print(f" Generating similar question...")
|
| 322 |
+
new_question = generate_similar_question(
|
| 323 |
+
parsed['question'],
|
| 324 |
+
parsed['choices'],
|
| 325 |
+
parsed['correct_answer']
|
| 326 |
+
)
|
| 327 |
+
else:
|
| 328 |
+
choice_explanations = "(AI generation skipped)"
|
| 329 |
+
new_question = "(AI generation skipped)"
|
| 330 |
+
|
| 331 |
+
# Format complete output
|
| 332 |
+
formatted = format_complete_output(
|
| 333 |
+
i + 1,
|
| 334 |
+
parsed,
|
| 335 |
+
original_explanation,
|
| 336 |
+
choice_explanations,
|
| 337 |
+
new_question
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
complete_output += formatted
|
| 341 |
+
|
| 342 |
+
return {
|
| 343 |
+
"output": complete_output,
|
| 344 |
+
"content_type": "text/plain"
|
| 345 |
+
}
|
| 346 |
|
| 347 |
+
# Gradio UI (simplified - just shows we have it)
|
| 348 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="MedQA Search") as demo:
|
| 349 |
+
gr.Markdown("# π₯ MedQA Search with AI Generation")
|
| 350 |
+
query_input = gr.Textbox(label="Query")
|
| 351 |
+
output = gr.Textbox(label="Results", lines=50)
|
| 352 |
+
|
| 353 |
app = gr.mount_gradio_app(app, demo, path="/")
|
| 354 |
|
|
|
|
| 355 |
if __name__ == "__main__":
|
| 356 |
import uvicorn
|
| 357 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|