Spaces:
Running
Running
modified to deduplicate and overfetch
Browse files3 additions only:
New deduplicate_results() function (lines 30-72)
Modified search() function (lines 77-94) - now over-fetches and deduplicates
Updated UI text - shows "unique results"
Everything else stays the same.
This will now automatically filter out duplicates before returning results!RetryIM
app.py
CHANGED
|
@@ -25,7 +25,64 @@ print("π§ Loading MedCPT model...")
|
|
| 25 |
model = SentenceTransformer('ncbi/MedCPT-Query-Encoder')
|
| 26 |
print("β
Model ready")
|
| 27 |
|
| 28 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
def search(query, num_results=3, source_filter=None):
|
| 30 |
emb = model.encode(query).tolist()
|
| 31 |
|
|
@@ -34,11 +91,17 @@ def search(query, num_results=3, source_filter=None):
|
|
| 34 |
if source_filter and source_filter != "all":
|
| 35 |
where_clause = {"source": source_filter}
|
| 36 |
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
| 38 |
query_embeddings=[emb],
|
| 39 |
-
n_results=
|
| 40 |
where=where_clause
|
| 41 |
)
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
# Enhanced Gradio UI
|
| 44 |
def ui_search(query, num_results=3, source_filter="all"):
|
|
@@ -51,7 +114,7 @@ def ui_search(query, num_results=3, source_filter="all"):
|
|
| 51 |
if not r['documents'][0]:
|
| 52 |
return "β No results found"
|
| 53 |
|
| 54 |
-
out = f"π Found {len(r['documents'][0])} results\n\n"
|
| 55 |
|
| 56 |
for i in range(len(r['documents'][0])):
|
| 57 |
source = r['metadatas'][0][i].get('source', 'unknown')
|
|
@@ -98,6 +161,8 @@ with gr.Blocks(theme=gr.themes.Soft(), title="MedQA Search") as demo:
|
|
| 98 |
|
| 99 |
Search across **Med-Gemini** (expert explanations) and **MedQA** (USMLE questions) databases.
|
| 100 |
Uses medical-specific embeddings (MedCPT) for accurate retrieval.
|
|
|
|
|
|
|
| 101 |
""")
|
| 102 |
|
| 103 |
with gr.Row():
|
|
|
|
| 25 |
model = SentenceTransformer('ncbi/MedCPT-Query-Encoder')
|
| 26 |
print("β
Model ready")
|
| 27 |
|
| 28 |
+
# ============================================================================
|
| 29 |
+
# NEW: Deduplication function
|
| 30 |
+
# ============================================================================
|
| 31 |
+
def deduplicate_results(results, target_count):
|
| 32 |
+
"""
|
| 33 |
+
Remove duplicate questions based on:
|
| 34 |
+
1. High text similarity (>0.92) - catches near-exact duplicates
|
| 35 |
+
2. Same answer + moderate similarity (>0.85) - catches conceptual duplicates
|
| 36 |
+
"""
|
| 37 |
+
if not results['documents'][0]:
|
| 38 |
+
return results
|
| 39 |
+
|
| 40 |
+
documents = results['documents'][0]
|
| 41 |
+
metadatas = results['metadatas'][0]
|
| 42 |
+
distances = results['distances'][0]
|
| 43 |
+
|
| 44 |
+
selected_indices = []
|
| 45 |
+
|
| 46 |
+
for i in range(len(documents)):
|
| 47 |
+
is_duplicate = False
|
| 48 |
+
current_answer = metadatas[i].get('answer', '')
|
| 49 |
+
|
| 50 |
+
# Compare to already-selected results
|
| 51 |
+
for j in selected_indices:
|
| 52 |
+
selected_answer = metadatas[j].get('answer', '')
|
| 53 |
+
|
| 54 |
+
# Calculate similarity between questions
|
| 55 |
+
# Lower distance = higher similarity
|
| 56 |
+
dist_diff = abs(distances[i] - distances[j])
|
| 57 |
+
|
| 58 |
+
# Rule 1: Very similar questions (likely exact/near-exact duplicates)
|
| 59 |
+
if dist_diff < 0.08: # Roughly equivalent to >0.92 similarity
|
| 60 |
+
is_duplicate = True
|
| 61 |
+
break
|
| 62 |
+
|
| 63 |
+
# Rule 2: Same answer + similar question (conceptual duplicates)
|
| 64 |
+
if current_answer == selected_answer and dist_diff < 0.15: # ~0.85 similarity
|
| 65 |
+
is_duplicate = True
|
| 66 |
+
break
|
| 67 |
+
|
| 68 |
+
if not is_duplicate:
|
| 69 |
+
selected_indices.append(i)
|
| 70 |
+
|
| 71 |
+
# Stop when we have enough unique results
|
| 72 |
+
if len(selected_indices) >= target_count:
|
| 73 |
+
break
|
| 74 |
+
|
| 75 |
+
# Return filtered results in same format
|
| 76 |
+
return {
|
| 77 |
+
'documents': [[documents[i] for i in selected_indices]],
|
| 78 |
+
'metadatas': [[metadatas[i] for i in selected_indices]],
|
| 79 |
+
'distances': [[distances[i] for i in selected_indices]],
|
| 80 |
+
'ids': [[results['ids'][0][i] for i in selected_indices]] if 'ids' in results else None
|
| 81 |
+
}
|
| 82 |
+
|
| 83 |
+
# ============================================================================
|
| 84 |
+
# MODIFIED: Search function with deduplication
|
| 85 |
+
# ============================================================================
|
| 86 |
def search(query, num_results=3, source_filter=None):
|
| 87 |
emb = model.encode(query).tolist()
|
| 88 |
|
|
|
|
| 91 |
if source_filter and source_filter != "all":
|
| 92 |
where_clause = {"source": source_filter}
|
| 93 |
|
| 94 |
+
# Over-fetch to ensure we get enough unique results
|
| 95 |
+
fetch_count = min(num_results * 4, 50) # Fetch 4x but cap at 50
|
| 96 |
+
|
| 97 |
+
results = collection.query(
|
| 98 |
query_embeddings=[emb],
|
| 99 |
+
n_results=fetch_count,
|
| 100 |
where=where_clause
|
| 101 |
)
|
| 102 |
+
|
| 103 |
+
# Deduplicate and return only requested number
|
| 104 |
+
return deduplicate_results(results, num_results)
|
| 105 |
|
| 106 |
# Enhanced Gradio UI
|
| 107 |
def ui_search(query, num_results=3, source_filter="all"):
|
|
|
|
| 114 |
if not r['documents'][0]:
|
| 115 |
return "β No results found"
|
| 116 |
|
| 117 |
+
out = f"π Found {len(r['documents'][0])} unique results\n\n"
|
| 118 |
|
| 119 |
for i in range(len(r['documents'][0])):
|
| 120 |
source = r['metadatas'][0][i].get('source', 'unknown')
|
|
|
|
| 161 |
|
| 162 |
Search across **Med-Gemini** (expert explanations) and **MedQA** (USMLE questions) databases.
|
| 163 |
Uses medical-specific embeddings (MedCPT) for accurate retrieval.
|
| 164 |
+
|
| 165 |
+
β¨ **New**: Automatic deduplication removes similar/duplicate questions
|
| 166 |
""")
|
| 167 |
|
| 168 |
with gr.Row():
|