Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import timm | |
import types | |
import math | |
import torch.nn.functional as F | |
from .utils import (activations, forward_adapted_unflatten, get_activation, get_readout_oper, | |
make_backbone_default, Transpose) | |
def forward_vit(pretrained, x): | |
return forward_adapted_unflatten(pretrained, x, "forward_flex") | |
def _resize_pos_embed(self, posemb, gs_h, gs_w): | |
posemb_tok, posemb_grid = ( | |
posemb[:, : self.start_index], | |
posemb[0, self.start_index:], | |
) | |
gs_old = int(math.sqrt(len(posemb_grid))) | |
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2) | |
posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear") | |
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1) | |
posemb = torch.cat([posemb_tok, posemb_grid], dim=1) | |
return posemb | |
def forward_flex(self, x): | |
b, c, h, w = x.shape | |
pos_embed = self._resize_pos_embed( | |
self.pos_embed, h // self.patch_size[1], w // self.patch_size[0] | |
) | |
B = x.shape[0] | |
if hasattr(self.patch_embed, "backbone"): | |
x = self.patch_embed.backbone(x) | |
if isinstance(x, (list, tuple)): | |
x = x[-1] # last feature if backbone outputs list/tuple of features | |
x = self.patch_embed.proj(x).flatten(2).transpose(1, 2) | |
if getattr(self, "dist_token", None) is not None: | |
cls_tokens = self.cls_token.expand( | |
B, -1, -1 | |
) # stole cls_tokens impl from Phil Wang, thanks | |
dist_token = self.dist_token.expand(B, -1, -1) | |
x = torch.cat((cls_tokens, dist_token, x), dim=1) | |
else: | |
if self.no_embed_class: | |
x = x + pos_embed | |
cls_tokens = self.cls_token.expand( | |
B, -1, -1 | |
) # stole cls_tokens impl from Phil Wang, thanks | |
x = torch.cat((cls_tokens, x), dim=1) | |
if not self.no_embed_class: | |
x = x + pos_embed | |
x = self.pos_drop(x) | |
for blk in self.blocks: | |
x = blk(x) | |
x = self.norm(x) | |
return x | |
def _make_vit_b16_backbone( | |
model, | |
features=[96, 192, 384, 768], | |
size=[384, 384], | |
hooks=[2, 5, 8, 11], | |
vit_features=768, | |
use_readout="ignore", | |
start_index=1, | |
start_index_readout=1, | |
): | |
pretrained = make_backbone_default(model, features, size, hooks, vit_features, use_readout, start_index, | |
start_index_readout) | |
# We inject this function into the VisionTransformer instances so that | |
# we can use it with interpolated position embeddings without modifying the library source. | |
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model) | |
pretrained.model._resize_pos_embed = types.MethodType( | |
_resize_pos_embed, pretrained.model | |
) | |
return pretrained | |
def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None): | |
model = timm.create_model("vit_large_patch16_384", pretrained=pretrained) | |
hooks = [5, 11, 17, 23] if hooks == None else hooks | |
return _make_vit_b16_backbone( | |
model, | |
features=[256, 512, 1024, 1024], | |
hooks=hooks, | |
vit_features=1024, | |
use_readout=use_readout, | |
) | |
def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None): | |
model = timm.create_model("vit_base_patch16_384", pretrained=pretrained) | |
hooks = [2, 5, 8, 11] if hooks == None else hooks | |
return _make_vit_b16_backbone( | |
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout | |
) | |
def _make_vit_b_rn50_backbone( | |
model, | |
features=[256, 512, 768, 768], | |
size=[384, 384], | |
hooks=[0, 1, 8, 11], | |
vit_features=768, | |
patch_size=[16, 16], | |
number_stages=2, | |
use_vit_only=False, | |
use_readout="ignore", | |
start_index=1, | |
): | |
pretrained = nn.Module() | |
pretrained.model = model | |
used_number_stages = 0 if use_vit_only else number_stages | |
for s in range(used_number_stages): | |
pretrained.model.patch_embed.backbone.stages[s].register_forward_hook( | |
get_activation(str(s + 1)) | |
) | |
for s in range(used_number_stages, 4): | |
pretrained.model.blocks[hooks[s]].register_forward_hook(get_activation(str(s + 1))) | |
pretrained.activations = activations | |
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index) | |
for s in range(used_number_stages): | |
value = nn.Sequential(nn.Identity(), nn.Identity(), nn.Identity()) | |
exec(f"pretrained.act_postprocess{s + 1}=value") | |
for s in range(used_number_stages, 4): | |
if s < number_stages: | |
final_layer = nn.ConvTranspose2d( | |
in_channels=features[s], | |
out_channels=features[s], | |
kernel_size=4 // (2 ** s), | |
stride=4 // (2 ** s), | |
padding=0, | |
bias=True, | |
dilation=1, | |
groups=1, | |
) | |
elif s > number_stages: | |
final_layer = nn.Conv2d( | |
in_channels=features[3], | |
out_channels=features[3], | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
) | |
else: | |
final_layer = None | |
layers = [ | |
readout_oper[s], | |
Transpose(1, 2), | |
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), | |
nn.Conv2d( | |
in_channels=vit_features, | |
out_channels=features[s], | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
), | |
] | |
if final_layer is not None: | |
layers.append(final_layer) | |
value = nn.Sequential(*layers) | |
exec(f"pretrained.act_postprocess{s + 1}=value") | |
pretrained.model.start_index = start_index | |
pretrained.model.patch_size = patch_size | |
# We inject this function into the VisionTransformer instances so that | |
# we can use it with interpolated position embeddings without modifying the library source. | |
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model) | |
# We inject this function into the VisionTransformer instances so that | |
# we can use it with interpolated position embeddings without modifying the library source. | |
pretrained.model._resize_pos_embed = types.MethodType( | |
_resize_pos_embed, pretrained.model | |
) | |
return pretrained | |
def _make_pretrained_vitb_rn50_384( | |
pretrained, use_readout="ignore", hooks=None, use_vit_only=False | |
): | |
model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained) | |
hooks = [0, 1, 8, 11] if hooks == None else hooks | |
return _make_vit_b_rn50_backbone( | |
model, | |
features=[256, 512, 768, 768], | |
size=[384, 384], | |
hooks=hooks, | |
use_vit_only=use_vit_only, | |
use_readout=use_readout, | |
) | |