Spaces:
Sleeping
Sleeping
| import os | |
| # Redirect cache to a writable path inside container | |
| os.environ["XDG_CACHE_HOME"] = "/tmp/.cache" | |
| import gradio as gr | |
| from impresso_pipelines.ocrqa import OCRQAPipeline | |
| pipeline = OCRQAPipeline() | |
| LANGUAGES = ["en", "de", "fr"] | |
| # Example OCR text (German text with typical OCR errors) | |
| EXAMPLE_TEXT = """Vieles Seltsame geschieht auf Erden : | |
| Nichts Seltsameres sieht der Mond | |
| Als das Glück, das im Knopfloch wohnt. | |
| Zaubrisch faßt es den ernsten Mann. | |
| Ohne nach Weib u. Kinjd zu fragen | |
| Reitet er aus, nach dem Glück zu jagen, | |
| Nur nacb ihm war stets sein Vegehr. | |
| Aber neben ihm 1reitet der Dämon her | |
| Des Ehrgeizes mit finsterer Tücke, | |
| Und so jagt er zuletzt auf die Brücke, | |
| Die über dem Abgrund, d:m nächtlich schwarzen | |
| Jählings abbricht.""" | |
| def process_ocr_qa(text, lang_choice): | |
| try: | |
| lang = None if lang_choice == "Auto-detect" else lang_choice | |
| result = pipeline(text, language=lang, diagnostics=True) | |
| # Format the output for better readability | |
| if isinstance(result, dict): | |
| output_lines = [] | |
| # Language detection | |
| if 'language' in result: | |
| output_lines.append(f"🌍 Language: {result['language']}") | |
| # Quality score | |
| if 'score' in result: | |
| score = result['score'] | |
| score_emoji = "🟢" if score >= 0.8 else "🟡" if score >= 0.5 else "🔴" | |
| output_lines.append(f"{score_emoji} Quality Score: {score:.1f}") | |
| # Diagnostics section | |
| if 'diagnostics' in result and result['diagnostics']: | |
| diagnostics = result['diagnostics'] | |
| # Model information | |
| if 'model_id' in diagnostics: | |
| output_lines.append(f"🤖 Model: {diagnostics['model_id']}") | |
| # Known tokens | |
| if 'known_tokens' in diagnostics and diagnostics['known_tokens']: | |
| known_tokens = diagnostics['known_tokens'] | |
| output_lines.append(f"✅ Known tokens ({len(known_tokens)}): {', '.join(known_tokens)}") | |
| # Unknown tokens (potential OCR errors) | |
| if 'unknown_tokens' in diagnostics and diagnostics['unknown_tokens']: | |
| unknown_tokens = diagnostics['unknown_tokens'] | |
| output_lines.append(f"❌ Potential OCR errors ({len(unknown_tokens)}): {', '.join(unknown_tokens)}") | |
| elif 'unknown_tokens' in diagnostics: | |
| output_lines.append("✨ No potential OCR errors detected!") | |
| # Other fields | |
| for key, value in result.items(): | |
| if key not in ['language', 'score', 'diagnostics']: | |
| output_lines.append(f"🔍 {key.replace('_', ' ').title()}: {value}") | |
| return "\n\n".join(output_lines) | |
| else: | |
| return f"✨ Processed Result:\n{result}" | |
| except Exception as e: | |
| print("❌ Pipeline error:", e) | |
| return f"Error: {e}" | |
| # Create the interface with logo and improved description | |
| with gr.Blocks(title="OCR QA Demo") as demo: | |
| # Add logo at the top | |
| gr.Image("logo.jpeg", label=None, show_label=False, container=False, height=100) | |
| gr.Markdown( | |
| """ | |
| # 🔍 OCR Quality Assessment Demo | |
| This demo showcases the **OCR Quality Assessment (OCRQA)** pipeline developed as part of the [Impresso Project](https://impresso-project.ch). The pipeline evaluates the quality of text extracted via **Optical Character Recognition (OCR)** by estimating the proportion of recognizable words. | |
| It returns: | |
| - a **quality score** between **0.0 (poor)** and **1.0 (excellent)**, and | |
| - a list of **potential OCR errors** (unrecognized tokens). | |
| You can try the example below (a German text containing typical OCR errors), or paste your own OCR-processed text to assess its quality. | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| text_input = gr.Textbox( | |
| label="Enter OCR Text", | |
| value=EXAMPLE_TEXT, | |
| lines=8, | |
| placeholder="Enter your OCR text here..." | |
| ) | |
| lang_dropdown = gr.Dropdown( | |
| choices=["Auto-detect"] + LANGUAGES, | |
| value="de", | |
| label="Language" | |
| ) | |
| submit_btn = gr.Button("🔍 Analyze OCR Quality", variant="primary") | |
| with gr.Column(): | |
| with gr.Row(): | |
| output = gr.Textbox( | |
| label="Analysis Results", | |
| lines=15, | |
| placeholder="Results will appear here...", | |
| scale=10 | |
| ) | |
| info_btn = gr.Button("Pipeline Info", size="sm", scale=1) | |
| # Info modal/accordion for pipeline details | |
| with gr.Accordion("📝 About the OCR QA Pipeline", open=False, visible=False) as info_accordion: | |
| gr.Markdown( | |
| """ | |
| - **Quality Score**: Evaluates the overall quality of OCR text. From 0.0 (poor) to 1.0 (excellent) | |
| - **Known tokens**: Words recognized as valid in the selected language | |
| - **Potential OCR errors**: Identifies common OCR mistakes and artifacts | |
| """ | |
| ) | |
| submit_btn.click( | |
| fn=process_ocr_qa, | |
| inputs=[text_input, lang_dropdown], | |
| outputs=output | |
| ) | |
| # Toggle info visibility when info button is clicked | |
| info_btn.click( | |
| fn=lambda: gr.Accordion(visible=True, open=True), | |
| outputs=info_accordion | |
| ) | |
| demo.launch(server_name="0.0.0.0", server_port=7860) |