Spaces:
Runtime error
Runtime error
Antoine Chaffin
commited on
Commit
·
a2f05a9
1
Parent(s):
a09d0a4
Creating model and tokenizer and passing it to watermarker init
Browse files- app.py +8 -5
- watermark.py +4 -8
app.py
CHANGED
@@ -6,6 +6,7 @@ import numpy as np
|
|
6 |
from watermark import Watermarker
|
7 |
import time
|
8 |
import gradio as gr
|
|
|
9 |
|
10 |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
11 |
|
@@ -20,26 +21,28 @@ USERS = ['Alice', 'Bob', 'Charlie', 'Dan']
|
|
20 |
EMBED_METHODS = [ 'aaronson', 'kirchenbauer', 'sampling', 'greedy' ]
|
21 |
DETECT_METHODS = [ 'aaronson', 'aaronson_simplified', 'aaronson_neyman_pearson', 'kirchenbauer']
|
22 |
PAYLOAD_BITS = 2
|
|
|
23 |
|
24 |
-
watermarker = Watermarker(modelname=args.model, window_size=window_size, payload_bits=PAYLOAD_BITS)
|
25 |
DEFAULT_SYSTEM_PROMPT = """\
|
26 |
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
|
27 |
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\
|
28 |
"""
|
|
|
|
|
|
|
29 |
|
30 |
def embed(user, max_length, window_size, method, prompt):
|
31 |
uid = USERS.index(user)
|
32 |
|
33 |
-
|
34 |
watermarked_texts = watermarker.embed(key=args.key, messages=[ uid ],
|
35 |
-
max_length=max_length, method=method, prompt=prompt)
|
36 |
print("watermarked_texts: ", watermarked_texts)
|
37 |
|
38 |
return watermarked_texts[0]
|
39 |
|
40 |
def detect(attacked_text, window_size, method, prompt):
|
41 |
-
watermarker = Watermarker(
|
42 |
-
window_size=window_size, payload_bits=PAYLOAD_BITS)
|
43 |
|
44 |
pvalues, messages = watermarker.detect([ attacked_text ], key=args.key, method=method, prompts=[prompt])
|
45 |
print("messages: ", messages)
|
|
|
6 |
from watermark import Watermarker
|
7 |
import time
|
8 |
import gradio as gr
|
9 |
+
from transformers import AutoModelForCausalLM
|
10 |
|
11 |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
12 |
|
|
|
21 |
EMBED_METHODS = [ 'aaronson', 'kirchenbauer', 'sampling', 'greedy' ]
|
22 |
DETECT_METHODS = [ 'aaronson', 'aaronson_simplified', 'aaronson_neyman_pearson', 'kirchenbauer']
|
23 |
PAYLOAD_BITS = 2
|
24 |
+
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
|
25 |
|
|
|
26 |
DEFAULT_SYSTEM_PROMPT = """\
|
27 |
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
|
28 |
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\
|
29 |
"""
|
30 |
+
model = AutoModelForCausalLM.from_pretrained(args.model, use_auth_token=hf_token, torch_dtype=torch.float16,
|
31 |
+
device_map='auto').to(device)
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model, use_auth_token=hf_token)
|
33 |
|
34 |
def embed(user, max_length, window_size, method, prompt):
|
35 |
uid = USERS.index(user)
|
36 |
|
37 |
+
watermarker = Watermarker(tokenizer=tokenizer, model=model, window_size=window_size, payload_bits=PAYLOAD_BITS)
|
38 |
watermarked_texts = watermarker.embed(key=args.key, messages=[ uid ],
|
39 |
+
max_length=max_length, method=method, prompt=prompt, window_size=window_size)
|
40 |
print("watermarked_texts: ", watermarked_texts)
|
41 |
|
42 |
return watermarked_texts[0]
|
43 |
|
44 |
def detect(attacked_text, window_size, method, prompt):
|
45 |
+
watermarker = Watermarker(tokenizer=tokenizer, model=model, window_size=window_size, payload_bits=PAYLOAD_BITS)
|
|
|
46 |
|
47 |
pvalues, messages = watermarker.detect([ attacked_text ], key=args.key, method=method, prompts=[prompt])
|
48 |
print("messages: ", messages)
|
watermark.py
CHANGED
@@ -1,9 +1,6 @@
|
|
1 |
import transformers
|
2 |
from transformers import AutoTokenizer
|
3 |
-
|
4 |
-
AutoTokenizer,
|
5 |
-
AutoModelForCausalLM,
|
6 |
-
)
|
7 |
from transformers import pipeline, set_seed, LogitsProcessor
|
8 |
from transformers.generation.logits_process import TopPLogitsWarper, TopKLogitsWarper
|
9 |
import torch
|
@@ -90,10 +87,9 @@ class WatermarkingKirchenbauerLogitsProcessor(WatermarkingLogitsProcessor):
|
|
90 |
return scores
|
91 |
|
92 |
class Watermarker(object):
|
93 |
-
def __init__(self,
|
94 |
-
self.tokenizer =
|
95 |
-
self.model =
|
96 |
-
device_map='auto').to(device)
|
97 |
self.model.eval()
|
98 |
self.window_size = window_size
|
99 |
|
|
|
1 |
import transformers
|
2 |
from transformers import AutoTokenizer
|
3 |
+
|
|
|
|
|
|
|
4 |
from transformers import pipeline, set_seed, LogitsProcessor
|
5 |
from transformers.generation.logits_process import TopPLogitsWarper, TopKLogitsWarper
|
6 |
import torch
|
|
|
87 |
return scores
|
88 |
|
89 |
class Watermarker(object):
|
90 |
+
def __init__(self, tokenizer=None, model=None, window_size = 0, payload_bits = 0, logits_processor = None, *args, **kwargs):
|
91 |
+
self.tokenizer = tokenizer
|
92 |
+
self.model = model
|
|
|
93 |
self.model.eval()
|
94 |
self.window_size = window_size
|
95 |
|