hibalaz commited on
Commit
67de693
1 Parent(s): 7e5a7cd

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -138
app.py DELETED
@@ -1,138 +0,0 @@
1
- import gradio as gr
2
- from sentence_transformers import SentenceTransformer, util
3
- from transformers import pipeline, GPT2Tokenizer
4
- import os
5
-
6
- # Define paths and model identifiers for easy reference and maintenance
7
- filename = "output_country_details.txt" # Filename for stored country details
8
- retrieval_model_name = 'output/sentence-transformer-finetuned/'
9
- gpt2_model_name = "gpt2" # Identifier for the GPT-2 model used
10
- tokenizer = GPT2Tokenizer.from_pretrained(gpt2_model_name)
11
-
12
- # Load models and handle potential failures gracefully
13
- try:
14
- retrieval_model = SentenceTransformer(retrieval_model_name)
15
- gpt_model = pipeline("text-generation", model=gpt2_model_name)
16
- print("Models loaded successfully.")
17
- except Exception as e:
18
- print(f"Failed to load models: {e}")
19
-
20
- def load_and_preprocess_text(filename):
21
- """
22
- Load text data from a file and preprocess it by stripping whitespace and ignoring empty lines.
23
-
24
- Args:
25
- filename (str): Path to the file containing text data.
26
-
27
- Returns:
28
- list of str: Preprocessed lines of text from the file.
29
- """
30
- try:
31
- with open(filename, 'r', encoding='utf-8') as file:
32
- segments = [line.strip() for line in file if line.strip()]
33
- print("Text loaded and preprocessed successfully.")
34
- return segments
35
- except Exception as e:
36
- print(f"Failed to load or preprocess text: {e}")
37
- return []
38
-
39
- segments = load_and_preprocess_text(filename)
40
-
41
- def find_relevant_segment(user_query, segments):
42
- """
43
- Identify the most relevant text segment from a list based on a user's query using sentence embeddings.
44
-
45
- Args:
46
- user_query (str): User's input query.
47
- segments (list of str): List of text segments to search from.
48
-
49
- Returns:
50
- str: The text segment that best matches the query.
51
- """
52
- try:
53
- query_embedding = retrieval_model.encode(user_query)
54
- segment_embeddings = retrieval_model.encode(segments)
55
- similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
56
- best_idx = similarities.argmax()
57
- print("Relevant segment found:", segments[best_idx])
58
- return segments[best_idx]
59
- except Exception as e:
60
- print(f"Error finding relevant segment: {e}")
61
- return ""
62
-
63
- def generate_response(user_query, relevant_segment):
64
- """
65
- Generate a response to a user's query using a text generation model based on a relevant text segment.
66
-
67
- Args:
68
- user_query (str): The user's query.
69
- relevant_segment (str): The segment of text that is relevant to the query.
70
-
71
- Returns:
72
- str: A response generated from the model.
73
- """
74
- try:
75
- prompt = f"Thank you for your question! This is an additional fact about your topic: {relevant_segment}"
76
- max_tokens = len(tokenizer(prompt)['input_ids']) + 50
77
- response = gpt_model(prompt, max_length=max_tokens, temperature=0.25)[0]['generated_text']
78
- response_cleaned = clean_up_response(response, relevant_segment)
79
- return response_cleaned
80
- except Exception as e:
81
- print(f"Error generating response: {e}")
82
- return ""
83
-
84
- def clean_up_response(response, segments):
85
- """
86
- Clean and format the generated response by removing empty sentences and repetitive parts.
87
-
88
- Args:
89
- response (str): The raw response generated by the model.
90
- segments (str): The text segment used to generate the response.
91
-
92
- Returns:
93
- str: Cleaned and formatted response.
94
- """
95
- sentences = response.split('.')
96
- cleaned_sentences = []
97
- for sentence in sentences:
98
- if sentence.strip() and sentence.strip() not in segments and sentence.strip() not in cleaned_sentences:
99
- cleaned_sentences.append(sentence.strip())
100
- cleaned_response = '. '.join(cleaned_sentences).strip()
101
- if cleaned_response and not cleaned_response.endswith((".", "!", "?")):
102
- cleaned_response += "."
103
- return cleaned_response
104
-
105
- # Gradio interface and application logic
106
- def query_model(question):
107
- """
108
- Process a question through the model and return the response.
109
-
110
- Args:
111
- question (str): The question submitted by the user.
112
-
113
- Returns:
114
- str: Generated response or welcome message if no question is provided.
115
- """
116
- if question == "":
117
- return welcome_message
118
- relevant_segment = find_relevant_segment(question, segments)
119
- response = generate_response(question, relevant_segment)
120
- return response
121
-
122
- with gr.Blocks() as demo:
123
- gr.Markdown(welcome_message)
124
- with gr.Row():
125
- with gr.Column():
126
- gr.Markdown(topics)
127
- with gr.Column():
128
- gr.Markdown(countries)
129
- with gr.Row():
130
- img = gr.Image(os.path.join(os.getcwd(), "final.png"), width=500)
131
- with gr.Row():
132
- with gr.Column():
133
- question = gr.Textbox(label="Your question", placeholder="What do you want to ask about?")
134
- answer = gr.Textbox(label="VisaBot Response", placeholder="VisaBot will respond here...", interactive=False, lines=10)
135
- submit_button = gr.Button("Submit")
136
- submit_button.click(fn=query_model, inputs=question, outputs=answer)
137
-
138
- demo.launch()