Spaces:
Sleeping
Sleeping
matanninio
commited on
Commit
•
c45ba32
1
Parent(s):
e35b2f0
spelling, wording, and a bug in the PPI prompt builder
Browse files- app.py +1 -1
- mammal_demo/ppi_task.py +1 -1
- mammal_demo/tcr_task.py +4 -4
app.py
CHANGED
@@ -14,7 +14,7 @@ MAIN_MARKDOWN_TEXT = """
|
|
14 |
The **[ibm/biomed.omics.bl.sm.ma-ted-458m](https://huggingface.co/models?sort=trending&search=ibm%2Fbiomed.omics.bl)** model family is a biomedical foundation model and its finetuned variants trained on over 2 billion biological samples across multiple modalities, including proteins, small molecules, and single-cell gene data.
|
15 |
Designed for robust performance, it achieves state-of-the-art results over a variety of tasks across the entire drug discovery pipeline and the diverse biomedical domains.
|
16 |
|
17 |
-
Based on the **M**olecular **A**ligned **M**ulti-**M**odal **A**rchitecture and **L**anguage
|
18 |
The syntax allows for dynamic combinations of tokens and scalars, enabling classification, regression, and generation tasks either within a single domain or with cross-domain entities.
|
19 |
|
20 |
This page demonstraits a variety of drug discovery and biomedical tasks for the model family. Select the task to access the specific demos.
|
|
|
14 |
The **[ibm/biomed.omics.bl.sm.ma-ted-458m](https://huggingface.co/models?sort=trending&search=ibm%2Fbiomed.omics.bl)** model family is a biomedical foundation model and its finetuned variants trained on over 2 billion biological samples across multiple modalities, including proteins, small molecules, and single-cell gene data.
|
15 |
Designed for robust performance, it achieves state-of-the-art results over a variety of tasks across the entire drug discovery pipeline and the diverse biomedical domains.
|
16 |
|
17 |
+
Based on the [**MAMMAL** - **M**olecular **A**ligned **M**ulti-**M**odal **A**rchitecture and **L**anguage](https://arxiv.org/abs/2410.22367v2), a flexible, multi-domain architecture with an adaptable task prompt syntax.
|
18 |
The syntax allows for dynamic combinations of tokens and scalars, enabling classification, regression, and generation tasks either within a single domain or with cross-domain entities.
|
19 |
|
20 |
This page demonstraits a variety of drug discovery and biomedical tasks for the model family. Select the task to access the specific demos.
|
mammal_demo/ppi_task.py
CHANGED
@@ -58,7 +58,7 @@ class PpiTask(MammalTask):
|
|
58 |
def crate_sample_dict(self, sample_inputs: dict, model_holder: MammalObjectBroker):
|
59 |
# Create and load sample
|
60 |
sample_dict = dict()
|
61 |
-
prompt = self.generate_prompt(
|
62 |
sample_dict[ENCODER_INPUTS_STR] = prompt
|
63 |
|
64 |
# Tokenize
|
|
|
58 |
def crate_sample_dict(self, sample_inputs: dict, model_holder: MammalObjectBroker):
|
59 |
# Create and load sample
|
60 |
sample_dict = dict()
|
61 |
+
prompt = self.generate_prompt(**sample_inputs)
|
62 |
sample_dict[ENCODER_INPUTS_STR] = prompt
|
63 |
|
64 |
# Tokenize
|
mammal_demo/tcr_task.py
CHANGED
@@ -16,17 +16,17 @@ from mammal_demo.demo_framework import MammalObjectBroker, MammalTask
|
|
16 |
class TcrTask(MammalTask):
|
17 |
def __init__(self, model_dict):
|
18 |
super().__init__(
|
19 |
-
name="
|
20 |
)
|
21 |
-
self.description = "
|
22 |
self.examples = {
|
23 |
"tcr_beta_seq": "NAGVTQTPKFQVLKTGQSMTLQCAQDMNHEYMSWYRQDPGMGLRLIHYSVGAGITDQGEVPNGYNVSRSTTEDFPLRLLSAAPSQTSVYFCASSYSWDRVLEQYFGPGTRLTVT",
|
24 |
"epitope_seq": "LLQTGIHVRVSQPSL",
|
25 |
}
|
26 |
self.markup_text = """
|
27 |
-
# Mammal based
|
28 |
|
29 |
-
Given
|
30 |
"""
|
31 |
|
32 |
def create_prompt(self, tcr_beta_seq, epitope_seq):
|
|
|
16 |
class TcrTask(MammalTask):
|
17 |
def __init__(self, model_dict):
|
18 |
super().__init__(
|
19 |
+
name="Mammal based TCRbeta-epitope binding affinity", model_dict=model_dict
|
20 |
)
|
21 |
+
self.description = "Mammal based TCRbeta-epitope binding affinity (TCR)"
|
22 |
self.examples = {
|
23 |
"tcr_beta_seq": "NAGVTQTPKFQVLKTGQSMTLQCAQDMNHEYMSWYRQDPGMGLRLIHYSVGAGITDQGEVPNGYNVSRSTTEDFPLRLLSAAPSQTSVYFCASSYSWDRVLEQYFGPGTRLTVT",
|
24 |
"epitope_seq": "LLQTGIHVRVSQPSL",
|
25 |
}
|
26 |
self.markup_text = """
|
27 |
+
# Mammal based Mammal based TCRbeta-epitope binding affinity demonstration
|
28 |
|
29 |
+
Given a TCR beta chain and epitope amino acid sequences, estimate the binding affinity score.
|
30 |
"""
|
31 |
|
32 |
def create_prompt(self, tcr_beta_seq, epitope_seq):
|