matanninio commited on
Commit
c45ba32
1 Parent(s): e35b2f0

spelling, wording, and a bug in the PPI prompt builder

Browse files
Files changed (3) hide show
  1. app.py +1 -1
  2. mammal_demo/ppi_task.py +1 -1
  3. mammal_demo/tcr_task.py +4 -4
app.py CHANGED
@@ -14,7 +14,7 @@ MAIN_MARKDOWN_TEXT = """
14
  The **[ibm/biomed.omics.bl.sm.ma-ted-458m](https://huggingface.co/models?sort=trending&search=ibm%2Fbiomed.omics.bl)** model family is a biomedical foundation model and its finetuned variants trained on over 2 billion biological samples across multiple modalities, including proteins, small molecules, and single-cell gene data.
15
  Designed for robust performance, it achieves state-of-the-art results over a variety of tasks across the entire drug discovery pipeline and the diverse biomedical domains.
16
 
17
- Based on the **M**olecular **A**ligned **M**ulti-**M**odal **A**rchitecture and **L**anguage (**MAMMAL**), a flexible, multi-domain architecture with an adaptable task prompt syntax.
18
  The syntax allows for dynamic combinations of tokens and scalars, enabling classification, regression, and generation tasks either within a single domain or with cross-domain entities.
19
 
20
  This page demonstraits a variety of drug discovery and biomedical tasks for the model family. Select the task to access the specific demos.
 
14
  The **[ibm/biomed.omics.bl.sm.ma-ted-458m](https://huggingface.co/models?sort=trending&search=ibm%2Fbiomed.omics.bl)** model family is a biomedical foundation model and its finetuned variants trained on over 2 billion biological samples across multiple modalities, including proteins, small molecules, and single-cell gene data.
15
  Designed for robust performance, it achieves state-of-the-art results over a variety of tasks across the entire drug discovery pipeline and the diverse biomedical domains.
16
 
17
+ Based on the [**MAMMAL** - **M**olecular **A**ligned **M**ulti-**M**odal **A**rchitecture and **L**anguage](https://arxiv.org/abs/2410.22367v2), a flexible, multi-domain architecture with an adaptable task prompt syntax.
18
  The syntax allows for dynamic combinations of tokens and scalars, enabling classification, regression, and generation tasks either within a single domain or with cross-domain entities.
19
 
20
  This page demonstraits a variety of drug discovery and biomedical tasks for the model family. Select the task to access the specific demos.
mammal_demo/ppi_task.py CHANGED
@@ -58,7 +58,7 @@ class PpiTask(MammalTask):
58
  def crate_sample_dict(self, sample_inputs: dict, model_holder: MammalObjectBroker):
59
  # Create and load sample
60
  sample_dict = dict()
61
- prompt = self.generate_prompt(*sample_inputs)
62
  sample_dict[ENCODER_INPUTS_STR] = prompt
63
 
64
  # Tokenize
 
58
  def crate_sample_dict(self, sample_inputs: dict, model_holder: MammalObjectBroker):
59
  # Create and load sample
60
  sample_dict = dict()
61
+ prompt = self.generate_prompt(**sample_inputs)
62
  sample_dict[ENCODER_INPUTS_STR] = prompt
63
 
64
  # Tokenize
mammal_demo/tcr_task.py CHANGED
@@ -16,17 +16,17 @@ from mammal_demo.demo_framework import MammalObjectBroker, MammalTask
16
  class TcrTask(MammalTask):
17
  def __init__(self, model_dict):
18
  super().__init__(
19
- name="T-cell receptors-peptide binding specificity", model_dict=model_dict
20
  )
21
- self.description = "T-cell receptors-peptide binding specificity (TCR)"
22
  self.examples = {
23
  "tcr_beta_seq": "NAGVTQTPKFQVLKTGQSMTLQCAQDMNHEYMSWYRQDPGMGLRLIHYSVGAGITDQGEVPNGYNVSRSTTEDFPLRLLSAAPSQTSVYFCASSYSWDRVLEQYFGPGTRLTVT",
24
  "epitope_seq": "LLQTGIHVRVSQPSL",
25
  }
26
  self.markup_text = """
27
- # Mammal based T-cell receptors-peptide binding specificity demonstration
28
 
29
- Given the TCR beta sequence and the epitope sequence, estimate the binding specificity.
30
  """
31
 
32
  def create_prompt(self, tcr_beta_seq, epitope_seq):
 
16
  class TcrTask(MammalTask):
17
  def __init__(self, model_dict):
18
  super().__init__(
19
+ name="Mammal based TCRbeta-epitope binding affinity", model_dict=model_dict
20
  )
21
+ self.description = "Mammal based TCRbeta-epitope binding affinity (TCR)"
22
  self.examples = {
23
  "tcr_beta_seq": "NAGVTQTPKFQVLKTGQSMTLQCAQDMNHEYMSWYRQDPGMGLRLIHYSVGAGITDQGEVPNGYNVSRSTTEDFPLRLLSAAPSQTSVYFCASSYSWDRVLEQYFGPGTRLTVT",
24
  "epitope_seq": "LLQTGIHVRVSQPSL",
25
  }
26
  self.markup_text = """
27
+ # Mammal based Mammal based TCRbeta-epitope binding affinity demonstration
28
 
29
+ Given a TCR beta chain and epitope amino acid sequences, estimate the binding affinity score.
30
  """
31
 
32
  def create_prompt(self, tcr_beta_seq, epitope_seq):