Spaces:
Sleeping
Sleeping
matanninio
commited on
Commit
·
b64cfbe
1
Parent(s):
41a03fb
added proper support for name overide in Molnet tasks and a reasonable texts for the new tasks
Browse files- mammal_demo/__init__.py +38 -15
- mammal_demo/molnet_task.py +5 -4
mammal_demo/__init__.py
CHANGED
@@ -17,48 +17,71 @@ def tasks_and_models():
|
|
17 |
# Note that the tasks need access to the models, as the model to use depends on the state of the widget
|
18 |
# we pass the all_models dict and update it when we actualy have the models.
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
bbbp_task =
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
# create the model holders. hold the model and the tokenizer, lazy download
|
29 |
# note that the list of relevent tasks needs to be stated.
|
30 |
all_models.register_model(
|
31 |
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd",
|
32 |
-
task_list=[
|
33 |
)
|
34 |
all_models.register_model(
|
35 |
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd_peer",
|
36 |
-
task_list=[
|
37 |
)
|
38 |
|
39 |
all_models.register_model(
|
40 |
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.tcr_epitope_bind",
|
41 |
-
task_list=[
|
42 |
)
|
43 |
all_models.register_model(
|
44 |
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.protein_solubility",
|
45 |
-
task_list=[
|
46 |
)
|
47 |
all_models.register_model(
|
48 |
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m",
|
49 |
-
task_list=[
|
50 |
)
|
51 |
all_models.register_model(
|
52 |
"ibm/biomed.omics.bl.sm.ma-ted-458m.moleculenet_clintox_tox",
|
53 |
-
task_list=[
|
54 |
)
|
55 |
all_models.register_model(
|
56 |
"ibm/biomed.omics.bl.sm.ma-ted-458m.moleculenet_clintox_fda",
|
57 |
-
task_list=[
|
58 |
)
|
59 |
all_models.register_model(
|
60 |
"ibm/biomed.omics.bl.sm.ma-ted-458m.moleculenet_bbbp",
|
61 |
-
task_list=[
|
62 |
)
|
63 |
|
64 |
return all_tasks,all_models
|
|
|
17 |
# Note that the tasks need access to the models, as the model to use depends on the state of the widget
|
18 |
# we pass the all_models dict and update it when we actualy have the models.
|
19 |
|
20 |
+
ppi_task_name = all_tasks.register_task(PpiTask(model_dict=all_models))
|
21 |
+
tdi_task_name = all_tasks.register_task(DtiTask(model_dict=all_models))
|
22 |
+
ps_task_name = all_tasks.register_task(PsTask(model_dict=all_models))
|
23 |
+
tcr_task_name = all_tasks.register_task(TcrTask(model_dict=all_models))
|
24 |
+
bbbp_task = MolnetTask(model_dict=all_models,task_name="BBBP", name= "Blood-Brain Barrier Penetration")
|
25 |
+
bbbp_task.markup_text = """
|
26 |
+
# Mammal based small molecule blood-brain barrier penetration demonstration
|
27 |
+
|
28 |
+
Given a drug (in SMILES), estimate the likelihood that it will penetrate the Blood-Brain Barrier.
|
29 |
+
"""
|
30 |
+
bbbp_task_name = all_tasks.register_task(bbbp_task)
|
31 |
+
|
32 |
+
toxicity_task = MolnetTask(model_dict=all_models,task_name="TOXICITY", name= "Drug Toxicity Trials Failer")
|
33 |
+
toxicity_task.markup_text = """
|
34 |
+
# Mammal based small molecule toxicity trials failer estimation demonstration
|
35 |
+
|
36 |
+
Given a drug (in SMILES), estimate the likelihood that it will fail in clinical toxicity trials.
|
37 |
+
"""
|
38 |
+
toxicity_task_name = all_tasks.register_task(toxicity_task)
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
fda_appr_task=MolnetTask(model_dict=all_models,task_name="FDA_APPR", name="drug FDA approval demonstration")
|
43 |
+
fda_appr_task.markup_text = """
|
44 |
+
# Mammal based small molecule drug FDA approval demonstration
|
45 |
+
|
46 |
+
Given a drug (in SMILES), estimate the likelihood that it will be approved by the FDA.
|
47 |
+
"""
|
48 |
+
fda_appr_task_name = all_tasks.register_task(fda_appr_task)
|
49 |
+
|
50 |
|
51 |
# create the model holders. hold the model and the tokenizer, lazy download
|
52 |
# note that the list of relevent tasks needs to be stated.
|
53 |
all_models.register_model(
|
54 |
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd",
|
55 |
+
task_list=[tdi_task_name],
|
56 |
)
|
57 |
all_models.register_model(
|
58 |
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd_peer",
|
59 |
+
task_list=[tdi_task_name],
|
60 |
)
|
61 |
|
62 |
all_models.register_model(
|
63 |
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.tcr_epitope_bind",
|
64 |
+
task_list=[tcr_task_name],
|
65 |
)
|
66 |
all_models.register_model(
|
67 |
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.protein_solubility",
|
68 |
+
task_list=[ps_task_name],
|
69 |
)
|
70 |
all_models.register_model(
|
71 |
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m",
|
72 |
+
task_list=[ppi_task_name],
|
73 |
)
|
74 |
all_models.register_model(
|
75 |
"ibm/biomed.omics.bl.sm.ma-ted-458m.moleculenet_clintox_tox",
|
76 |
+
task_list=[toxicity_task_name]
|
77 |
)
|
78 |
all_models.register_model(
|
79 |
"ibm/biomed.omics.bl.sm.ma-ted-458m.moleculenet_clintox_fda",
|
80 |
+
task_list=[fda_appr_task_name]
|
81 |
)
|
82 |
all_models.register_model(
|
83 |
"ibm/biomed.omics.bl.sm.ma-ted-458m.moleculenet_bbbp",
|
84 |
+
task_list=[bbbp_task_name],
|
85 |
)
|
86 |
|
87 |
return all_tasks,all_models
|
mammal_demo/molnet_task.py
CHANGED
@@ -7,17 +7,18 @@ from mammal_demo.demo_framework import MammalObjectBroker, MammalTask
|
|
7 |
|
8 |
|
9 |
class MolnetTask(MammalTask):
|
10 |
-
def __init__(self, model_dict, task_name="BBBP"):
|
11 |
-
|
|
|
|
|
12 |
self.description = f"MOLNET {task_name}"
|
13 |
self.examples = {
|
14 |
"drug_seq": "CC(=O)NCCC1=CNc2c1cc(OC)cc2",
|
15 |
}
|
16 |
self.task_name=task_name
|
17 |
self.markup_text = """
|
18 |
-
# Mammal
|
19 |
|
20 |
-
Given a protein sequence and a drug (in SMILES), estimate the binding affinity.
|
21 |
"""
|
22 |
|
23 |
def crate_sample_dict(self, sample_inputs: dict, model_holder: MammalObjectBroker) -> dict:
|
|
|
7 |
|
8 |
|
9 |
class MolnetTask(MammalTask):
|
10 |
+
def __init__(self, model_dict, task_name="BBBP", name=None):
|
11 |
+
if name is None:
|
12 |
+
name=f"Molnet: {task_name}"
|
13 |
+
super().__init__(name=name, model_dict=model_dict)
|
14 |
self.description = f"MOLNET {task_name}"
|
15 |
self.examples = {
|
16 |
"drug_seq": "CC(=O)NCCC1=CNc2c1cc(OC)cc2",
|
17 |
}
|
18 |
self.task_name=task_name
|
19 |
self.markup_text = """
|
20 |
+
# Mammal demonstration
|
21 |
|
|
|
22 |
"""
|
23 |
|
24 |
def crate_sample_dict(self, sample_inputs: dict, model_holder: MammalObjectBroker) -> dict:
|