Spaces:
Sleeping
Sleeping
import gradio as gr | |
from mammal_demo.demo_framework import MammalObjectBroker, MammalTask | |
from mammal_demo.dti_task import DtiTask | |
from mammal_demo.ppi_task import PpiTask | |
from mammal_demo.tcr_task import TcrTask | |
all_tasks: dict[str, MammalTask] = dict() | |
all_models: dict[str, MammalObjectBroker] = dict() | |
# first create the required tasks | |
# Note that the tasks need access to the models, as the model to use depends on the state of the widget | |
# we pass the all_models dict and update it when we actualy have the models. | |
ppi_task = PpiTask(model_dict=all_models) | |
all_tasks[ppi_task.name] = ppi_task | |
tdi_task = DtiTask(model_dict=all_models) | |
all_tasks[tdi_task.name] = tdi_task | |
tcr_task = TcrTask(model_dict=all_models) | |
all_tasks[tcr_task.name] = tcr_task | |
# create the model holders. hold the model and the tokenizer, lazy download | |
# note that the list of relevent tasks needs to be stated. | |
ppi_model = MammalObjectBroker( | |
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m", task_list=[ppi_task.name,tcr_task.name] | |
) | |
all_models[ppi_model.name] = ppi_model | |
tdi_model = MammalObjectBroker( | |
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd", | |
task_list=[tdi_task.name], | |
) | |
all_models[tdi_model.name] = tdi_model | |
tcr_model = MammalObjectBroker( | |
model_path= "ibm/biomed.omics.bl.sm.ma-ted-458m.tcr_epitope_bind", | |
task_list=[tcr_task.name] | |
) | |
all_models[tcr_model.name] = tcr_model | |
def create_application(): | |
def task_change(value): | |
visibility = [gr.update(visible=(task == value)) for task in all_tasks.keys()] | |
choices = [ | |
model_name | |
for model_name, model in all_models.items() | |
if value in model.tasks | |
] | |
if choices: | |
return (gr.update(choices=choices, value=choices[0], visible=True), *visibility) | |
else: | |
return (gr.skip, *visibility) | |
# return model_name_dropdown | |
with gr.Blocks() as application: | |
task_dropdown = gr.Dropdown(choices=["select demo"] + list(all_tasks.keys()), label="Mammal Task") | |
task_dropdown.interactive = True | |
model_name_dropdown = gr.Dropdown( | |
choices=[ | |
model_name | |
for model_name, model in all_models.items() | |
if task_dropdown.value in model.tasks | |
], | |
interactive=True, | |
label="Matching Mammal models", | |
visible=False, | |
) | |
task_dropdown.change( | |
task_change, | |
inputs=[task_dropdown], | |
outputs=[model_name_dropdown] | |
+ [all_tasks[task].demo(model_name_widgit=model_name_dropdown) for task in all_tasks], | |
) | |
# def set_demo_vis(main_text): | |
# main_text=main_text | |
# print(f"main text is {main_text}") | |
# return gr.Group(visible=True) | |
# #return gr.Group(visible=(main_text == "PPI")) | |
# # , gr.Group( visible=(main_text == "DTI") ) | |
# task_dropdown.change( | |
# set_ppi_vis, inputs=task_dropdown, outputs=[ppi_demo] | |
# ) | |
return application | |
full_demo = None | |
def main(): | |
global full_demo | |
full_demo = create_application() | |
full_demo.launch(show_error=True, share=False) | |
if __name__ == "__main__": | |
main() | |