Spaces:
Running
on
Zero
Running
on
Zero
| from __future__ import annotations | |
| from enum import Enum | |
| from typing import Any, Dict, Optional | |
| from pydantic import BaseModel, Field, confloat, conint | |
| class BFLOutputFormat(str, Enum): | |
| png = 'png' | |
| jpeg = 'jpeg' | |
| class BFLFluxExpandImageRequest(BaseModel): | |
| prompt: str = Field(..., description='The description of the changes you want to make. This text guides the expansion process, allowing you to specify features, styles, or modifications for the expanded areas.') | |
| prompt_upsampling: Optional[bool] = Field( | |
| None, description='Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation.' | |
| ) | |
| seed: Optional[int] = Field(None, description='The seed value for reproducibility.') | |
| top: conint(ge=0, le=2048) = Field(..., description='Number of pixels to expand at the top of the image') | |
| bottom: conint(ge=0, le=2048) = Field(..., description='Number of pixels to expand at the bottom of the image') | |
| left: conint(ge=0, le=2048) = Field(..., description='Number of pixels to expand at the left side of the image') | |
| right: conint(ge=0, le=2048) = Field(..., description='Number of pixels to expand at the right side of the image') | |
| steps: conint(ge=15, le=50) = Field(..., description='Number of steps for the image generation process') | |
| guidance: confloat(ge=1.5, le=100) = Field(..., description='Guidance strength for the image generation process') | |
| safety_tolerance: Optional[conint(ge=0, le=6)] = Field( | |
| 6, description='Tolerance level for input and output moderation. Between 0 and 6, 0 being most strict, 6 being least strict. Defaults to 2.' | |
| ) | |
| output_format: Optional[BFLOutputFormat] = Field( | |
| BFLOutputFormat.png, description="Output format for the generated image. Can be 'jpeg' or 'png'.", examples=['png'] | |
| ) | |
| image: str = Field(None, description='A Base64-encoded string representing the image you wish to expand') | |
| class BFLFluxFillImageRequest(BaseModel): | |
| prompt: str = Field(..., description='The description of the changes you want to make. This text guides the expansion process, allowing you to specify features, styles, or modifications for the expanded areas.') | |
| prompt_upsampling: Optional[bool] = Field( | |
| None, description='Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation.' | |
| ) | |
| seed: Optional[int] = Field(None, description='The seed value for reproducibility.') | |
| steps: conint(ge=15, le=50) = Field(..., description='Number of steps for the image generation process') | |
| guidance: confloat(ge=1.5, le=100) = Field(..., description='Guidance strength for the image generation process') | |
| safety_tolerance: Optional[conint(ge=0, le=6)] = Field( | |
| 6, description='Tolerance level for input and output moderation. Between 0 and 6, 0 being most strict, 6 being least strict. Defaults to 2.' | |
| ) | |
| output_format: Optional[BFLOutputFormat] = Field( | |
| BFLOutputFormat.png, description="Output format for the generated image. Can be 'jpeg' or 'png'.", examples=['png'] | |
| ) | |
| image: str = Field(None, description='A Base64-encoded string representing the image you wish to modify. Can contain alpha mask if desired.') | |
| mask: str = Field(None, description='A Base64-encoded string representing the mask of the areas you with to modify.') | |
| class BFLFluxCannyImageRequest(BaseModel): | |
| prompt: str = Field(..., description='Text prompt for image generation') | |
| prompt_upsampling: Optional[bool] = Field( | |
| None, description='Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation.' | |
| ) | |
| canny_low_threshold: Optional[int] = Field(None, description='Low threshold for Canny edge detection') | |
| canny_high_threshold: Optional[int] = Field(None, description='High threshold for Canny edge detection') | |
| seed: Optional[int] = Field(None, description='The seed value for reproducibility.') | |
| steps: conint(ge=15, le=50) = Field(..., description='Number of steps for the image generation process') | |
| guidance: confloat(ge=1, le=100) = Field(..., description='Guidance strength for the image generation process') | |
| safety_tolerance: Optional[conint(ge=0, le=6)] = Field( | |
| 6, description='Tolerance level for input and output moderation. Between 0 and 6, 0 being most strict, 6 being least strict. Defaults to 2.' | |
| ) | |
| output_format: Optional[BFLOutputFormat] = Field( | |
| BFLOutputFormat.png, description="Output format for the generated image. Can be 'jpeg' or 'png'.", examples=['png'] | |
| ) | |
| control_image: Optional[str] = Field(None, description='Base64 encoded image to use as control input if no preprocessed image is provided') | |
| preprocessed_image: Optional[str] = Field(None, description='Optional pre-processed image that will bypass the control preprocessing step') | |
| class BFLFluxDepthImageRequest(BaseModel): | |
| prompt: str = Field(..., description='Text prompt for image generation') | |
| prompt_upsampling: Optional[bool] = Field( | |
| None, description='Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation.' | |
| ) | |
| seed: Optional[int] = Field(None, description='The seed value for reproducibility.') | |
| steps: conint(ge=15, le=50) = Field(..., description='Number of steps for the image generation process') | |
| guidance: confloat(ge=1, le=100) = Field(..., description='Guidance strength for the image generation process') | |
| safety_tolerance: Optional[conint(ge=0, le=6)] = Field( | |
| 6, description='Tolerance level for input and output moderation. Between 0 and 6, 0 being most strict, 6 being least strict. Defaults to 2.' | |
| ) | |
| output_format: Optional[BFLOutputFormat] = Field( | |
| BFLOutputFormat.png, description="Output format for the generated image. Can be 'jpeg' or 'png'.", examples=['png'] | |
| ) | |
| control_image: Optional[str] = Field(None, description='Base64 encoded image to use as control input if no preprocessed image is provided') | |
| preprocessed_image: Optional[str] = Field(None, description='Optional pre-processed image that will bypass the control preprocessing step') | |
| class BFLFluxProGenerateRequest(BaseModel): | |
| prompt: str = Field(..., description='The text prompt for image generation.') | |
| prompt_upsampling: Optional[bool] = Field( | |
| None, description='Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation.' | |
| ) | |
| seed: Optional[int] = Field(None, description='The seed value for reproducibility.') | |
| width: conint(ge=256, le=1440) = Field(1024, description='Width of the generated image in pixels. Must be a multiple of 32.') | |
| height: conint(ge=256, le=1440) = Field(768, description='Height of the generated image in pixels. Must be a multiple of 32.') | |
| safety_tolerance: Optional[conint(ge=0, le=6)] = Field( | |
| 6, description='Tolerance level for input and output moderation. Between 0 and 6, 0 being most strict, 6 being least strict. Defaults to 2.' | |
| ) | |
| output_format: Optional[BFLOutputFormat] = Field( | |
| BFLOutputFormat.png, description="Output format for the generated image. Can be 'jpeg' or 'png'.", examples=['png'] | |
| ) | |
| image_prompt: Optional[str] = Field(None, description='Optional image to remix in base64 format') | |
| # image_prompt_strength: Optional[confloat(ge=0.0, le=1.0)] = Field( | |
| # None, description='Blend between the prompt and the image prompt.' | |
| # ) | |
| class BFLFluxKontextProGenerateRequest(BaseModel): | |
| prompt: str = Field(..., description='The text prompt for what you wannt to edit.') | |
| input_image: Optional[str] = Field(None, description='Image to edit in base64 format') | |
| seed: Optional[int] = Field(None, description='The seed value for reproducibility.') | |
| guidance: confloat(ge=0.1, le=99.0) = Field(..., description='Guidance strength for the image generation process') | |
| steps: conint(ge=1, le=150) = Field(..., description='Number of steps for the image generation process') | |
| safety_tolerance: Optional[conint(ge=0, le=2)] = Field( | |
| 2, description='Tolerance level for input and output moderation. Between 0 and 2, 0 being most strict, 6 being least strict. Defaults to 2.' | |
| ) | |
| output_format: Optional[BFLOutputFormat] = Field( | |
| BFLOutputFormat.png, description="Output format for the generated image. Can be 'jpeg' or 'png'.", examples=['png'] | |
| ) | |
| aspect_ratio: Optional[str] = Field(None, description='Aspect ratio of the image between 21:9 and 9:21.') | |
| prompt_upsampling: Optional[bool] = Field( | |
| None, description='Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation.' | |
| ) | |
| class BFLFluxProUltraGenerateRequest(BaseModel): | |
| prompt: str = Field(..., description='The text prompt for image generation.') | |
| prompt_upsampling: Optional[bool] = Field( | |
| None, description='Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation.' | |
| ) | |
| seed: Optional[int] = Field(None, description='The seed value for reproducibility.') | |
| aspect_ratio: Optional[str] = Field(None, description='Aspect ratio of the image between 21:9 and 9:21.') | |
| safety_tolerance: Optional[conint(ge=0, le=6)] = Field( | |
| 6, description='Tolerance level for input and output moderation. Between 0 and 6, 0 being most strict, 6 being least strict. Defaults to 2.' | |
| ) | |
| output_format: Optional[BFLOutputFormat] = Field( | |
| BFLOutputFormat.png, description="Output format for the generated image. Can be 'jpeg' or 'png'.", examples=['png'] | |
| ) | |
| raw: Optional[bool] = Field(None, description='Generate less processed, more natural-looking images.') | |
| image_prompt: Optional[str] = Field(None, description='Optional image to remix in base64 format') | |
| image_prompt_strength: Optional[confloat(ge=0.0, le=1.0)] = Field( | |
| None, description='Blend between the prompt and the image prompt.' | |
| ) | |
| class BFLFluxProGenerateResponse(BaseModel): | |
| id: str = Field(..., description='The unique identifier for the generation task.') | |
| polling_url: str = Field(..., description='URL to poll for the generation result.') | |
| class BFLStatus(str, Enum): | |
| task_not_found = "Task not found" | |
| pending = "Pending" | |
| request_moderated = "Request Moderated" | |
| content_moderated = "Content Moderated" | |
| ready = "Ready" | |
| error = "Error" | |
| class BFLFluxProStatusResponse(BaseModel): | |
| id: str = Field(..., description="The unique identifier for the generation task.") | |
| status: BFLStatus = Field(..., description="The status of the task.") | |
| result: Optional[Dict[str, Any]] = Field( | |
| None, description="The result of the task (null if not completed)." | |
| ) | |
| progress: confloat(ge=0.0, le=1.0) = Field( | |
| ..., description="The progress of the task (0.0 to 1.0)." | |
| ) | |
| details: Optional[Dict[str, Any]] = Field( | |
| None, description="Additional details about the task (null if not available)." | |
| ) | |