Spaces:
Runtime error
Runtime error
Upload network.py
Browse files- dnnlib/tflib/network.py +781 -0
dnnlib/tflib/network.py
ADDED
@@ -0,0 +1,781 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Helper for managing networks."""
|
10 |
+
|
11 |
+
import types
|
12 |
+
import inspect
|
13 |
+
import re
|
14 |
+
import uuid
|
15 |
+
import sys
|
16 |
+
import copy
|
17 |
+
import numpy as np
|
18 |
+
import tensorflow as tf
|
19 |
+
|
20 |
+
from collections import OrderedDict
|
21 |
+
from typing import Any, List, Tuple, Union, Callable
|
22 |
+
|
23 |
+
from . import tfutil
|
24 |
+
from .. import util
|
25 |
+
|
26 |
+
from .tfutil import TfExpression, TfExpressionEx
|
27 |
+
|
28 |
+
# pylint: disable=protected-access
|
29 |
+
# pylint: disable=attribute-defined-outside-init
|
30 |
+
# pylint: disable=too-many-public-methods
|
31 |
+
|
32 |
+
_import_handlers = [] # Custom import handlers for dealing with legacy data in pickle import.
|
33 |
+
_import_module_src = dict() # Source code for temporary modules created during pickle import.
|
34 |
+
|
35 |
+
|
36 |
+
def import_handler(handler_func):
|
37 |
+
"""Function decorator for declaring custom import handlers."""
|
38 |
+
_import_handlers.append(handler_func)
|
39 |
+
return handler_func
|
40 |
+
|
41 |
+
|
42 |
+
class Network:
|
43 |
+
"""Generic network abstraction.
|
44 |
+
|
45 |
+
Acts as a convenience wrapper for a parameterized network construction
|
46 |
+
function, providing several utility methods and convenient access to
|
47 |
+
the inputs/outputs/weights.
|
48 |
+
|
49 |
+
Network objects can be safely pickled and unpickled for long-term
|
50 |
+
archival purposes. The pickling works reliably as long as the underlying
|
51 |
+
network construction function is defined in a standalone Python module
|
52 |
+
that has no side effects or application-specific imports.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
name: Network name. Used to select TensorFlow name and variable scopes. Defaults to build func name if None.
|
56 |
+
func_name: Fully qualified name of the underlying network construction function, or a top-level function object.
|
57 |
+
static_kwargs: Keyword arguments to be passed in to the network construction function.
|
58 |
+
"""
|
59 |
+
|
60 |
+
def __init__(self, name: str = None, func_name: Any = None, **static_kwargs):
|
61 |
+
# Locate the user-specified build function.
|
62 |
+
assert isinstance(func_name, str) or util.is_top_level_function(func_name)
|
63 |
+
if util.is_top_level_function(func_name):
|
64 |
+
func_name = util.get_top_level_function_name(func_name)
|
65 |
+
module, func_name = util.get_module_from_obj_name(func_name)
|
66 |
+
func = util.get_obj_from_module(module, func_name)
|
67 |
+
|
68 |
+
# Dig up source code for the module containing the build function.
|
69 |
+
module_src = _import_module_src.get(module, None)
|
70 |
+
if module_src is None:
|
71 |
+
module_src = inspect.getsource(module)
|
72 |
+
|
73 |
+
# Initialize fields.
|
74 |
+
self._init_fields(name=(name or func_name), static_kwargs=static_kwargs, build_func=func, build_func_name=func_name, build_module_src=module_src)
|
75 |
+
|
76 |
+
def _init_fields(self, name: str, static_kwargs: dict, build_func: Callable, build_func_name: str, build_module_src: str) -> None:
|
77 |
+
tfutil.assert_tf_initialized()
|
78 |
+
assert isinstance(name, str)
|
79 |
+
assert len(name) >= 1
|
80 |
+
assert re.fullmatch(r"[A-Za-z0-9_.\\-]*", name)
|
81 |
+
assert isinstance(static_kwargs, dict)
|
82 |
+
assert util.is_pickleable(static_kwargs)
|
83 |
+
assert callable(build_func)
|
84 |
+
assert isinstance(build_func_name, str)
|
85 |
+
assert isinstance(build_module_src, str)
|
86 |
+
|
87 |
+
# Choose TensorFlow name scope.
|
88 |
+
with tf.name_scope(None):
|
89 |
+
scope = tf.get_default_graph().unique_name(name, mark_as_used=True)
|
90 |
+
|
91 |
+
# Query current TensorFlow device.
|
92 |
+
with tfutil.absolute_name_scope(scope), tf.control_dependencies(None):
|
93 |
+
device = tf.no_op(name="_QueryDevice").device
|
94 |
+
|
95 |
+
# Immutable state.
|
96 |
+
self._name = name
|
97 |
+
self._scope = scope
|
98 |
+
self._device = device
|
99 |
+
self._static_kwargs = util.EasyDict(copy.deepcopy(static_kwargs))
|
100 |
+
self._build_func = build_func
|
101 |
+
self._build_func_name = build_func_name
|
102 |
+
self._build_module_src = build_module_src
|
103 |
+
|
104 |
+
# State before _init_graph().
|
105 |
+
self._var_inits = dict() # var_name => initial_value, set to None by _init_graph()
|
106 |
+
self._all_inits_known = False # Do we know for sure that _var_inits covers all the variables?
|
107 |
+
self._components = None # subnet_name => Network, None if the components are not known yet
|
108 |
+
|
109 |
+
# Initialized by _init_graph().
|
110 |
+
self._input_templates = None
|
111 |
+
self._output_templates = None
|
112 |
+
self._own_vars = None
|
113 |
+
|
114 |
+
# Cached values initialized the respective methods.
|
115 |
+
self._input_shapes = None
|
116 |
+
self._output_shapes = None
|
117 |
+
self._input_names = None
|
118 |
+
self._output_names = None
|
119 |
+
self._vars = None
|
120 |
+
self._trainables = None
|
121 |
+
self._var_global_to_local = None
|
122 |
+
self._run_cache = dict()
|
123 |
+
|
124 |
+
def _init_graph(self) -> None:
|
125 |
+
assert self._var_inits is not None
|
126 |
+
assert self._input_templates is None
|
127 |
+
assert self._output_templates is None
|
128 |
+
assert self._own_vars is None
|
129 |
+
|
130 |
+
# Initialize components.
|
131 |
+
if self._components is None:
|
132 |
+
self._components = util.EasyDict()
|
133 |
+
|
134 |
+
# Choose build func kwargs.
|
135 |
+
build_kwargs = dict(self.static_kwargs)
|
136 |
+
build_kwargs["is_template_graph"] = True
|
137 |
+
build_kwargs["components"] = self._components
|
138 |
+
|
139 |
+
# Override scope and device, and ignore surrounding control dependencies.
|
140 |
+
with tfutil.absolute_variable_scope(self.scope, reuse=False), tfutil.absolute_name_scope(self.scope), tf.device(self.device), tf.control_dependencies(None):
|
141 |
+
assert tf.get_variable_scope().name == self.scope
|
142 |
+
assert tf.get_default_graph().get_name_scope() == self.scope
|
143 |
+
|
144 |
+
# Create input templates.
|
145 |
+
self._input_templates = []
|
146 |
+
for param in inspect.signature(self._build_func).parameters.values():
|
147 |
+
if param.kind == param.POSITIONAL_OR_KEYWORD and param.default is param.empty:
|
148 |
+
self._input_templates.append(tf.placeholder(tf.float32, name=param.name))
|
149 |
+
|
150 |
+
# Call build func.
|
151 |
+
out_expr = self._build_func(*self._input_templates, **build_kwargs)
|
152 |
+
|
153 |
+
# Collect output templates and variables.
|
154 |
+
assert tfutil.is_tf_expression(out_expr) or isinstance(out_expr, tuple)
|
155 |
+
self._output_templates = [out_expr] if tfutil.is_tf_expression(out_expr) else list(out_expr)
|
156 |
+
self._own_vars = OrderedDict((var.name[len(self.scope) + 1:].split(":")[0], var) for var in tf.global_variables(self.scope + "/"))
|
157 |
+
|
158 |
+
# Check for errors.
|
159 |
+
if len(self._input_templates) == 0:
|
160 |
+
raise ValueError("Network build func did not list any inputs.")
|
161 |
+
if len(self._output_templates) == 0:
|
162 |
+
raise ValueError("Network build func did not return any outputs.")
|
163 |
+
if any(not tfutil.is_tf_expression(t) for t in self._output_templates):
|
164 |
+
raise ValueError("Network outputs must be TensorFlow expressions.")
|
165 |
+
if any(t.shape.ndims is None for t in self._input_templates):
|
166 |
+
raise ValueError("Network input shapes not defined. Please call x.set_shape() for each input.")
|
167 |
+
if any(t.shape.ndims is None for t in self._output_templates):
|
168 |
+
raise ValueError("Network output shapes not defined. Please call x.set_shape() where applicable.")
|
169 |
+
if any(not isinstance(comp, Network) for comp in self._components.values()):
|
170 |
+
raise ValueError("Components of a Network must be Networks themselves.")
|
171 |
+
if len(self._components) != len(set(comp.name for comp in self._components.values())):
|
172 |
+
raise ValueError("Components of a Network must have unique names.")
|
173 |
+
|
174 |
+
# Initialize variables.
|
175 |
+
if len(self._var_inits):
|
176 |
+
tfutil.set_vars({self._get_vars()[name]: value for name, value in self._var_inits.items() if name in self._get_vars()})
|
177 |
+
remaining_inits = [var.initializer for name, var in self._own_vars.items() if name not in self._var_inits]
|
178 |
+
if self._all_inits_known:
|
179 |
+
assert len(remaining_inits) == 0
|
180 |
+
else:
|
181 |
+
tfutil.run(remaining_inits)
|
182 |
+
self._var_inits = None
|
183 |
+
|
184 |
+
@property
|
185 |
+
def name(self):
|
186 |
+
"""User-specified name string."""
|
187 |
+
return self._name
|
188 |
+
|
189 |
+
@property
|
190 |
+
def scope(self):
|
191 |
+
"""Unique TensorFlow scope containing template graph and variables, derived from the user-specified name."""
|
192 |
+
return self._scope
|
193 |
+
|
194 |
+
@property
|
195 |
+
def device(self):
|
196 |
+
"""Name of the TensorFlow device that the weights of this network reside on. Determined by the current device at construction time."""
|
197 |
+
return self._device
|
198 |
+
|
199 |
+
@property
|
200 |
+
def static_kwargs(self):
|
201 |
+
"""EasyDict of arguments passed to the user-supplied build func."""
|
202 |
+
return copy.deepcopy(self._static_kwargs)
|
203 |
+
|
204 |
+
@property
|
205 |
+
def components(self):
|
206 |
+
"""EasyDict of sub-networks created by the build func."""
|
207 |
+
return copy.copy(self._get_components())
|
208 |
+
|
209 |
+
def _get_components(self):
|
210 |
+
if self._components is None:
|
211 |
+
self._init_graph()
|
212 |
+
assert self._components is not None
|
213 |
+
return self._components
|
214 |
+
|
215 |
+
@property
|
216 |
+
def input_shapes(self):
|
217 |
+
"""List of input tensor shapes, including minibatch dimension."""
|
218 |
+
if self._input_shapes is None:
|
219 |
+
self._input_shapes = [t.shape.as_list() for t in self.input_templates]
|
220 |
+
return copy.deepcopy(self._input_shapes)
|
221 |
+
|
222 |
+
@property
|
223 |
+
def output_shapes(self):
|
224 |
+
"""List of output tensor shapes, including minibatch dimension."""
|
225 |
+
if self._output_shapes is None:
|
226 |
+
self._output_shapes = [t.shape.as_list() for t in self.output_templates]
|
227 |
+
return copy.deepcopy(self._output_shapes)
|
228 |
+
|
229 |
+
@property
|
230 |
+
def input_shape(self):
|
231 |
+
"""Short-hand for input_shapes[0]."""
|
232 |
+
return self.input_shapes[0]
|
233 |
+
|
234 |
+
@property
|
235 |
+
def output_shape(self):
|
236 |
+
"""Short-hand for output_shapes[0]."""
|
237 |
+
return self.output_shapes[0]
|
238 |
+
|
239 |
+
@property
|
240 |
+
def num_inputs(self):
|
241 |
+
"""Number of input tensors."""
|
242 |
+
return len(self.input_shapes)
|
243 |
+
|
244 |
+
@property
|
245 |
+
def num_outputs(self):
|
246 |
+
"""Number of output tensors."""
|
247 |
+
return len(self.output_shapes)
|
248 |
+
|
249 |
+
@property
|
250 |
+
def input_names(self):
|
251 |
+
"""Name string for each input."""
|
252 |
+
if self._input_names is None:
|
253 |
+
self._input_names = [t.name.split("/")[-1].split(":")[0] for t in self.input_templates]
|
254 |
+
return copy.copy(self._input_names)
|
255 |
+
|
256 |
+
@property
|
257 |
+
def output_names(self):
|
258 |
+
"""Name string for each output."""
|
259 |
+
if self._output_names is None:
|
260 |
+
self._output_names = [t.name.split("/")[-1].split(":")[0] for t in self.output_templates]
|
261 |
+
return copy.copy(self._output_names)
|
262 |
+
|
263 |
+
@property
|
264 |
+
def input_templates(self):
|
265 |
+
"""Input placeholders in the template graph."""
|
266 |
+
if self._input_templates is None:
|
267 |
+
self._init_graph()
|
268 |
+
assert self._input_templates is not None
|
269 |
+
return copy.copy(self._input_templates)
|
270 |
+
|
271 |
+
@property
|
272 |
+
def output_templates(self):
|
273 |
+
"""Output tensors in the template graph."""
|
274 |
+
if self._output_templates is None:
|
275 |
+
self._init_graph()
|
276 |
+
assert self._output_templates is not None
|
277 |
+
return copy.copy(self._output_templates)
|
278 |
+
|
279 |
+
@property
|
280 |
+
def own_vars(self):
|
281 |
+
"""Variables defined by this network (local_name => var), excluding sub-networks."""
|
282 |
+
return copy.copy(self._get_own_vars())
|
283 |
+
|
284 |
+
def _get_own_vars(self):
|
285 |
+
if self._own_vars is None:
|
286 |
+
self._init_graph()
|
287 |
+
assert self._own_vars is not None
|
288 |
+
return self._own_vars
|
289 |
+
|
290 |
+
@property
|
291 |
+
def vars(self):
|
292 |
+
"""All variables (local_name => var)."""
|
293 |
+
return copy.copy(self._get_vars())
|
294 |
+
|
295 |
+
def _get_vars(self):
|
296 |
+
if self._vars is None:
|
297 |
+
self._vars = OrderedDict(self._get_own_vars())
|
298 |
+
for comp in self._get_components().values():
|
299 |
+
self._vars.update((comp.name + "/" + name, var) for name, var in comp._get_vars().items())
|
300 |
+
return self._vars
|
301 |
+
|
302 |
+
@property
|
303 |
+
def trainables(self):
|
304 |
+
"""All trainable variables (local_name => var)."""
|
305 |
+
return copy.copy(self._get_trainables())
|
306 |
+
|
307 |
+
def _get_trainables(self):
|
308 |
+
if self._trainables is None:
|
309 |
+
self._trainables = OrderedDict((name, var) for name, var in self.vars.items() if var.trainable)
|
310 |
+
return self._trainables
|
311 |
+
|
312 |
+
@property
|
313 |
+
def var_global_to_local(self):
|
314 |
+
"""Mapping from variable global names to local names."""
|
315 |
+
return copy.copy(self._get_var_global_to_local())
|
316 |
+
|
317 |
+
def _get_var_global_to_local(self):
|
318 |
+
if self._var_global_to_local is None:
|
319 |
+
self._var_global_to_local = OrderedDict((var.name.split(":")[0], name) for name, var in self.vars.items())
|
320 |
+
return self._var_global_to_local
|
321 |
+
|
322 |
+
def reset_own_vars(self) -> None:
|
323 |
+
"""Re-initialize all variables of this network, excluding sub-networks."""
|
324 |
+
if self._var_inits is None or self._components is None:
|
325 |
+
tfutil.run([var.initializer for var in self._get_own_vars().values()])
|
326 |
+
else:
|
327 |
+
self._var_inits.clear()
|
328 |
+
self._all_inits_known = False
|
329 |
+
|
330 |
+
def reset_vars(self) -> None:
|
331 |
+
"""Re-initialize all variables of this network, including sub-networks."""
|
332 |
+
if self._var_inits is None:
|
333 |
+
tfutil.run([var.initializer for var in self._get_vars().values()])
|
334 |
+
else:
|
335 |
+
self._var_inits.clear()
|
336 |
+
self._all_inits_known = False
|
337 |
+
if self._components is not None:
|
338 |
+
for comp in self._components.values():
|
339 |
+
comp.reset_vars()
|
340 |
+
|
341 |
+
def reset_trainables(self) -> None:
|
342 |
+
"""Re-initialize all trainable variables of this network, including sub-networks."""
|
343 |
+
tfutil.run([var.initializer for var in self._get_trainables().values()])
|
344 |
+
|
345 |
+
def get_output_for(self, *in_expr: TfExpression, return_as_list: bool = False, **dynamic_kwargs) -> Union[TfExpression, List[TfExpression]]:
|
346 |
+
"""Construct TensorFlow expression(s) for the output(s) of this network, given the input expression(s).
|
347 |
+
The graph is placed on the current TensorFlow device."""
|
348 |
+
assert len(in_expr) == self.num_inputs
|
349 |
+
assert not all(expr is None for expr in in_expr)
|
350 |
+
self._get_vars() # ensure that all variables have been created
|
351 |
+
|
352 |
+
# Choose build func kwargs.
|
353 |
+
build_kwargs = dict(self.static_kwargs)
|
354 |
+
build_kwargs.update(dynamic_kwargs)
|
355 |
+
build_kwargs["is_template_graph"] = False
|
356 |
+
build_kwargs["components"] = self._components
|
357 |
+
|
358 |
+
# Build TensorFlow graph to evaluate the network.
|
359 |
+
with tfutil.absolute_variable_scope(self.scope, reuse=True), tf.name_scope(self.name):
|
360 |
+
assert tf.get_variable_scope().name == self.scope
|
361 |
+
valid_inputs = [expr for expr in in_expr if expr is not None]
|
362 |
+
final_inputs = []
|
363 |
+
for expr, name, shape in zip(in_expr, self.input_names, self.input_shapes):
|
364 |
+
if expr is not None:
|
365 |
+
expr = tf.identity(expr, name=name)
|
366 |
+
else:
|
367 |
+
expr = tf.zeros([tf.shape(valid_inputs[0])[0]] + shape[1:], name=name)
|
368 |
+
final_inputs.append(expr)
|
369 |
+
out_expr = self._build_func(*final_inputs, **build_kwargs)
|
370 |
+
|
371 |
+
# Propagate input shapes back to the user-specified expressions.
|
372 |
+
for expr, final in zip(in_expr, final_inputs):
|
373 |
+
if isinstance(expr, tf.Tensor):
|
374 |
+
expr.set_shape(final.shape)
|
375 |
+
|
376 |
+
# Express outputs in the desired format.
|
377 |
+
assert tfutil.is_tf_expression(out_expr) or isinstance(out_expr, tuple)
|
378 |
+
if return_as_list:
|
379 |
+
out_expr = [out_expr] if tfutil.is_tf_expression(out_expr) else list(out_expr)
|
380 |
+
return out_expr
|
381 |
+
|
382 |
+
def get_var_local_name(self, var_or_global_name: Union[TfExpression, str]) -> str:
|
383 |
+
"""Get the local name of a given variable, without any surrounding name scopes."""
|
384 |
+
assert tfutil.is_tf_expression(var_or_global_name) or isinstance(var_or_global_name, str)
|
385 |
+
global_name = var_or_global_name if isinstance(var_or_global_name, str) else var_or_global_name.name
|
386 |
+
return self._get_var_global_to_local()[global_name]
|
387 |
+
|
388 |
+
def find_var(self, var_or_local_name: Union[TfExpression, str]) -> TfExpression:
|
389 |
+
"""Find variable by local or global name."""
|
390 |
+
assert tfutil.is_tf_expression(var_or_local_name) or isinstance(var_or_local_name, str)
|
391 |
+
return self._get_vars()[var_or_local_name] if isinstance(var_or_local_name, str) else var_or_local_name
|
392 |
+
|
393 |
+
def get_var(self, var_or_local_name: Union[TfExpression, str]) -> np.ndarray:
|
394 |
+
"""Get the value of a given variable as NumPy array.
|
395 |
+
Note: This method is very inefficient -- prefer to use tflib.run(list_of_vars) whenever possible."""
|
396 |
+
return self.find_var(var_or_local_name).eval()
|
397 |
+
|
398 |
+
def set_var(self, var_or_local_name: Union[TfExpression, str], new_value: Union[int, float, np.ndarray]) -> None:
|
399 |
+
"""Set the value of a given variable based on the given NumPy array.
|
400 |
+
Note: This method is very inefficient -- prefer to use tflib.set_vars() whenever possible."""
|
401 |
+
tfutil.set_vars({self.find_var(var_or_local_name): new_value})
|
402 |
+
|
403 |
+
def __getstate__(self) -> dict:
|
404 |
+
"""Pickle export."""
|
405 |
+
state = dict()
|
406 |
+
state["version"] = 5
|
407 |
+
state["name"] = self.name
|
408 |
+
state["static_kwargs"] = dict(self.static_kwargs)
|
409 |
+
state["components"] = dict(self.components)
|
410 |
+
state["build_module_src"] = self._build_module_src
|
411 |
+
state["build_func_name"] = self._build_func_name
|
412 |
+
state["variables"] = list(zip(self._get_own_vars().keys(), tfutil.run(list(self._get_own_vars().values()))))
|
413 |
+
state["input_shapes"] = self.input_shapes
|
414 |
+
state["output_shapes"] = self.output_shapes
|
415 |
+
state["input_names"] = self.input_names
|
416 |
+
state["output_names"] = self.output_names
|
417 |
+
return state
|
418 |
+
|
419 |
+
def __setstate__(self, state: dict) -> None:
|
420 |
+
"""Pickle import."""
|
421 |
+
|
422 |
+
# Execute custom import handlers.
|
423 |
+
for handler in _import_handlers:
|
424 |
+
state = handler(state)
|
425 |
+
|
426 |
+
# Get basic fields.
|
427 |
+
assert state["version"] in [2, 3, 4, 5]
|
428 |
+
name = state["name"]
|
429 |
+
static_kwargs = state["static_kwargs"]
|
430 |
+
build_module_src = state["build_module_src"]
|
431 |
+
build_func_name = state["build_func_name"]
|
432 |
+
|
433 |
+
# Create temporary module from the imported source code.
|
434 |
+
module_name = "_tflib_network_import_" + uuid.uuid4().hex
|
435 |
+
module = types.ModuleType(module_name)
|
436 |
+
sys.modules[module_name] = module
|
437 |
+
_import_module_src[module] = build_module_src
|
438 |
+
exec(build_module_src, module.__dict__) # pylint: disable=exec-used
|
439 |
+
build_func = util.get_obj_from_module(module, build_func_name)
|
440 |
+
|
441 |
+
# Initialize fields.
|
442 |
+
self._init_fields(name=name, static_kwargs=static_kwargs, build_func=build_func, build_func_name=build_func_name, build_module_src=build_module_src)
|
443 |
+
self._var_inits.update(copy.deepcopy(state["variables"]))
|
444 |
+
self._all_inits_known = True
|
445 |
+
self._components = util.EasyDict(state.get("components", {}))
|
446 |
+
self._input_shapes = copy.deepcopy(state.get("input_shapes", None))
|
447 |
+
self._output_shapes = copy.deepcopy(state.get("output_shapes", None))
|
448 |
+
self._input_names = copy.deepcopy(state.get("input_names", None))
|
449 |
+
self._output_names = copy.deepcopy(state.get("output_names", None))
|
450 |
+
|
451 |
+
def clone(self, name: str = None, **new_static_kwargs) -> "Network":
|
452 |
+
"""Create a clone of this network with its own copy of the variables."""
|
453 |
+
static_kwargs = dict(self.static_kwargs)
|
454 |
+
static_kwargs.update(new_static_kwargs)
|
455 |
+
net = object.__new__(Network)
|
456 |
+
net._init_fields(name=(name or self.name), static_kwargs=static_kwargs, build_func=self._build_func, build_func_name=self._build_func_name, build_module_src=self._build_module_src)
|
457 |
+
net.copy_vars_from(self)
|
458 |
+
return net
|
459 |
+
|
460 |
+
def copy_own_vars_from(self, src_net: "Network") -> None:
|
461 |
+
"""Copy the values of all variables from the given network, excluding sub-networks."""
|
462 |
+
|
463 |
+
# Source has unknown variables or unknown components => init now.
|
464 |
+
if (src_net._var_inits is not None and not src_net._all_inits_known) or src_net._components is None:
|
465 |
+
src_net._get_vars()
|
466 |
+
|
467 |
+
# Both networks are inited => copy directly.
|
468 |
+
if src_net._var_inits is None and self._var_inits is None:
|
469 |
+
names = [name for name in self._get_own_vars().keys() if name in src_net._get_own_vars()]
|
470 |
+
tfutil.set_vars(tfutil.run({self._get_vars()[name]: src_net._get_vars()[name] for name in names}))
|
471 |
+
return
|
472 |
+
|
473 |
+
# Read from source.
|
474 |
+
if src_net._var_inits is None:
|
475 |
+
value_dict = tfutil.run(src_net._get_own_vars())
|
476 |
+
else:
|
477 |
+
value_dict = src_net._var_inits
|
478 |
+
|
479 |
+
# Write to destination.
|
480 |
+
if self._var_inits is None:
|
481 |
+
tfutil.set_vars({self._get_vars()[name]: value for name, value in value_dict.items() if name in self._get_vars()})
|
482 |
+
else:
|
483 |
+
self._var_inits.update(value_dict)
|
484 |
+
|
485 |
+
def copy_vars_from(self, src_net: "Network") -> None:
|
486 |
+
"""Copy the values of all variables from the given network, including sub-networks."""
|
487 |
+
|
488 |
+
# Source has unknown variables or unknown components => init now.
|
489 |
+
if (src_net._var_inits is not None and not src_net._all_inits_known) or src_net._components is None:
|
490 |
+
src_net._get_vars()
|
491 |
+
|
492 |
+
# Source is inited, but destination components have not been created yet => set as initial values.
|
493 |
+
if src_net._var_inits is None and self._components is None:
|
494 |
+
self._var_inits.update(tfutil.run(src_net._get_vars()))
|
495 |
+
return
|
496 |
+
|
497 |
+
# Destination has unknown components => init now.
|
498 |
+
if self._components is None:
|
499 |
+
self._get_vars()
|
500 |
+
|
501 |
+
# Both networks are inited => copy directly.
|
502 |
+
if src_net._var_inits is None and self._var_inits is None:
|
503 |
+
names = [name for name in self._get_vars().keys() if name in src_net._get_vars()]
|
504 |
+
tfutil.set_vars(tfutil.run({self._get_vars()[name]: src_net._get_vars()[name] for name in names}))
|
505 |
+
return
|
506 |
+
|
507 |
+
# Copy recursively, component by component.
|
508 |
+
self.copy_own_vars_from(src_net)
|
509 |
+
for name, src_comp in src_net._components.items():
|
510 |
+
if name in self._components:
|
511 |
+
self._components[name].copy_vars_from(src_comp)
|
512 |
+
|
513 |
+
def copy_trainables_from(self, src_net: "Network") -> None:
|
514 |
+
"""Copy the values of all trainable variables from the given network, including sub-networks."""
|
515 |
+
names = [name for name in self._get_trainables().keys() if name in src_net._get_trainables()]
|
516 |
+
tfutil.set_vars(tfutil.run({self._get_vars()[name]: src_net._get_vars()[name] for name in names}))
|
517 |
+
|
518 |
+
def convert(self, new_func_name: str, new_name: str = None, **new_static_kwargs) -> "Network":
|
519 |
+
"""Create new network with the given parameters, and copy all variables from this network."""
|
520 |
+
if new_name is None:
|
521 |
+
new_name = self.name
|
522 |
+
static_kwargs = dict(self.static_kwargs)
|
523 |
+
static_kwargs.update(new_static_kwargs)
|
524 |
+
net = Network(name=new_name, func_name=new_func_name, **static_kwargs)
|
525 |
+
net.copy_vars_from(self)
|
526 |
+
return net
|
527 |
+
|
528 |
+
def setup_as_moving_average_of(self, src_net: "Network", beta: TfExpressionEx = 0.99, beta_nontrainable: TfExpressionEx = 0.0) -> tf.Operation:
|
529 |
+
"""Construct a TensorFlow op that updates the variables of this network
|
530 |
+
to be slightly closer to those of the given network."""
|
531 |
+
with tfutil.absolute_name_scope(self.scope + "/_MovingAvg"):
|
532 |
+
ops = []
|
533 |
+
for name, var in self._get_vars().items():
|
534 |
+
if name in src_net._get_vars():
|
535 |
+
cur_beta = beta if var.trainable else beta_nontrainable
|
536 |
+
new_value = tfutil.lerp(src_net._get_vars()[name], var, cur_beta)
|
537 |
+
ops.append(var.assign(new_value))
|
538 |
+
return tf.group(*ops)
|
539 |
+
|
540 |
+
def run(self,
|
541 |
+
*in_arrays: Tuple[Union[np.ndarray, None], ...],
|
542 |
+
input_transform: dict = None,
|
543 |
+
output_transform: dict = None,
|
544 |
+
return_as_list: bool = False,
|
545 |
+
print_progress: bool = False,
|
546 |
+
minibatch_size: int = None,
|
547 |
+
num_gpus: int = 1,
|
548 |
+
assume_frozen: bool = False,
|
549 |
+
**dynamic_kwargs) -> Union[np.ndarray, Tuple[np.ndarray, ...], List[np.ndarray]]:
|
550 |
+
"""Run this network for the given NumPy array(s), and return the output(s) as NumPy array(s).
|
551 |
+
|
552 |
+
Args:
|
553 |
+
input_transform: A dict specifying a custom transformation to be applied to the input tensor(s) before evaluating the network.
|
554 |
+
The dict must contain a 'func' field that points to a top-level function. The function is called with the input
|
555 |
+
TensorFlow expression(s) as positional arguments. Any remaining fields of the dict will be passed in as kwargs.
|
556 |
+
output_transform: A dict specifying a custom transformation to be applied to the output tensor(s) after evaluating the network.
|
557 |
+
The dict must contain a 'func' field that points to a top-level function. The function is called with the output
|
558 |
+
TensorFlow expression(s) as positional arguments. Any remaining fields of the dict will be passed in as kwargs.
|
559 |
+
return_as_list: True = return a list of NumPy arrays, False = return a single NumPy array, or a tuple if there are multiple outputs.
|
560 |
+
print_progress: Print progress to the console? Useful for very large input arrays.
|
561 |
+
minibatch_size: Maximum minibatch size to use, None = disable batching.
|
562 |
+
num_gpus: Number of GPUs to use.
|
563 |
+
assume_frozen: Improve multi-GPU performance by assuming that the trainable parameters will remain changed between calls.
|
564 |
+
dynamic_kwargs: Additional keyword arguments to be passed into the network build function.
|
565 |
+
"""
|
566 |
+
assert len(in_arrays) == self.num_inputs
|
567 |
+
assert not all(arr is None for arr in in_arrays)
|
568 |
+
assert input_transform is None or util.is_top_level_function(input_transform["func"])
|
569 |
+
assert output_transform is None or util.is_top_level_function(output_transform["func"])
|
570 |
+
output_transform, dynamic_kwargs = _handle_legacy_output_transforms(output_transform, dynamic_kwargs)
|
571 |
+
num_items = in_arrays[0].shape[0]
|
572 |
+
if minibatch_size is None:
|
573 |
+
minibatch_size = num_items
|
574 |
+
|
575 |
+
# Construct unique hash key from all arguments that affect the TensorFlow graph.
|
576 |
+
key = dict(input_transform=input_transform, output_transform=output_transform, num_gpus=num_gpus, assume_frozen=assume_frozen, dynamic_kwargs=dynamic_kwargs)
|
577 |
+
def unwind_key(obj):
|
578 |
+
if isinstance(obj, dict):
|
579 |
+
return [(key, unwind_key(value)) for key, value in sorted(obj.items())]
|
580 |
+
if callable(obj):
|
581 |
+
return util.get_top_level_function_name(obj)
|
582 |
+
return obj
|
583 |
+
key = repr(unwind_key(key))
|
584 |
+
|
585 |
+
# Build graph.
|
586 |
+
if key not in self._run_cache:
|
587 |
+
with tfutil.absolute_name_scope(self.scope + "/_Run"), tf.control_dependencies(None):
|
588 |
+
with tf.device("/cpu:0"):
|
589 |
+
in_expr = [tf.placeholder(tf.float32, name=name) for name in self.input_names]
|
590 |
+
in_split = list(zip(*[tf.split(x, num_gpus) for x in in_expr]))
|
591 |
+
|
592 |
+
out_split = []
|
593 |
+
for gpu in range(num_gpus):
|
594 |
+
with tf.device(self.device if num_gpus == 1 else "/gpu:%d" % gpu):
|
595 |
+
net_gpu = self.clone() if assume_frozen else self
|
596 |
+
in_gpu = in_split[gpu]
|
597 |
+
|
598 |
+
if input_transform is not None:
|
599 |
+
in_kwargs = dict(input_transform)
|
600 |
+
in_gpu = in_kwargs.pop("func")(*in_gpu, **in_kwargs)
|
601 |
+
in_gpu = [in_gpu] if tfutil.is_tf_expression(in_gpu) else list(in_gpu)
|
602 |
+
|
603 |
+
assert len(in_gpu) == self.num_inputs
|
604 |
+
out_gpu = net_gpu.get_output_for(*in_gpu, return_as_list=True, **dynamic_kwargs)
|
605 |
+
|
606 |
+
if output_transform is not None:
|
607 |
+
out_kwargs = dict(output_transform)
|
608 |
+
out_gpu = out_kwargs.pop("func")(*out_gpu, **out_kwargs)
|
609 |
+
out_gpu = [out_gpu] if tfutil.is_tf_expression(out_gpu) else list(out_gpu)
|
610 |
+
|
611 |
+
assert len(out_gpu) == self.num_outputs
|
612 |
+
out_split.append(out_gpu)
|
613 |
+
|
614 |
+
with tf.device("/cpu:0"):
|
615 |
+
out_expr = [tf.concat(outputs, axis=0) for outputs in zip(*out_split)]
|
616 |
+
self._run_cache[key] = in_expr, out_expr
|
617 |
+
|
618 |
+
# Run minibatches.
|
619 |
+
in_expr, out_expr = self._run_cache[key]
|
620 |
+
out_arrays = [np.empty([num_items] + expr.shape.as_list()[1:], expr.dtype.name) for expr in out_expr]
|
621 |
+
|
622 |
+
for mb_begin in range(0, num_items, minibatch_size):
|
623 |
+
if print_progress:
|
624 |
+
print("\r%d / %d" % (mb_begin, num_items), end="")
|
625 |
+
|
626 |
+
mb_end = min(mb_begin + minibatch_size, num_items)
|
627 |
+
mb_num = mb_end - mb_begin
|
628 |
+
mb_in = [src[mb_begin : mb_end] if src is not None else np.zeros([mb_num] + shape[1:]) for src, shape in zip(in_arrays, self.input_shapes)]
|
629 |
+
mb_out = tf.get_default_session().run(out_expr, dict(zip(in_expr, mb_in)))
|
630 |
+
|
631 |
+
for dst, src in zip(out_arrays, mb_out):
|
632 |
+
dst[mb_begin: mb_end] = src
|
633 |
+
|
634 |
+
# Done.
|
635 |
+
if print_progress:
|
636 |
+
print("\r%d / %d" % (num_items, num_items))
|
637 |
+
|
638 |
+
if not return_as_list:
|
639 |
+
out_arrays = out_arrays[0] if len(out_arrays) == 1 else tuple(out_arrays)
|
640 |
+
return out_arrays
|
641 |
+
|
642 |
+
def list_ops(self) -> List[TfExpression]:
|
643 |
+
_ = self.output_templates # ensure that the template graph has been created
|
644 |
+
include_prefix = self.scope + "/"
|
645 |
+
exclude_prefix = include_prefix + "_"
|
646 |
+
ops = tf.get_default_graph().get_operations()
|
647 |
+
ops = [op for op in ops if op.name.startswith(include_prefix)]
|
648 |
+
ops = [op for op in ops if not op.name.startswith(exclude_prefix)]
|
649 |
+
return ops
|
650 |
+
|
651 |
+
def list_layers(self) -> List[Tuple[str, TfExpression, List[TfExpression]]]:
|
652 |
+
"""Returns a list of (layer_name, output_expr, trainable_vars) tuples corresponding to
|
653 |
+
individual layers of the network. Mainly intended to be used for reporting."""
|
654 |
+
layers = []
|
655 |
+
|
656 |
+
def recurse(scope, parent_ops, parent_vars, level):
|
657 |
+
if len(parent_ops) == 0 and len(parent_vars) == 0:
|
658 |
+
return
|
659 |
+
|
660 |
+
# Ignore specific patterns.
|
661 |
+
if any(p in scope for p in ["/Shape", "/strided_slice", "/Cast", "/concat", "/Assign"]):
|
662 |
+
return
|
663 |
+
|
664 |
+
# Filter ops and vars by scope.
|
665 |
+
global_prefix = scope + "/"
|
666 |
+
local_prefix = global_prefix[len(self.scope) + 1:]
|
667 |
+
cur_ops = [op for op in parent_ops if op.name.startswith(global_prefix) or op.name == global_prefix[:-1]]
|
668 |
+
cur_vars = [(name, var) for name, var in parent_vars if name.startswith(local_prefix) or name == local_prefix[:-1]]
|
669 |
+
if not cur_ops and not cur_vars:
|
670 |
+
return
|
671 |
+
|
672 |
+
# Filter out all ops related to variables.
|
673 |
+
for var in [op for op in cur_ops if op.type.startswith("Variable")]:
|
674 |
+
var_prefix = var.name + "/"
|
675 |
+
cur_ops = [op for op in cur_ops if not op.name.startswith(var_prefix)]
|
676 |
+
|
677 |
+
# Scope does not contain ops as immediate children => recurse deeper.
|
678 |
+
contains_direct_ops = any("/" not in op.name[len(global_prefix):] and op.type not in ["Identity", "Cast", "Transpose"] for op in cur_ops)
|
679 |
+
if (level == 0 or not contains_direct_ops) and (len(cur_ops) != 0 or len(cur_vars) != 0):
|
680 |
+
visited = set()
|
681 |
+
for rel_name in [op.name[len(global_prefix):] for op in cur_ops] + [name[len(local_prefix):] for name, _var in cur_vars]:
|
682 |
+
token = rel_name.split("/")[0]
|
683 |
+
if token not in visited:
|
684 |
+
recurse(global_prefix + token, cur_ops, cur_vars, level + 1)
|
685 |
+
visited.add(token)
|
686 |
+
return
|
687 |
+
|
688 |
+
# Report layer.
|
689 |
+
layer_name = scope[len(self.scope) + 1:]
|
690 |
+
layer_output = cur_ops[-1].outputs[0] if cur_ops else cur_vars[-1][1]
|
691 |
+
layer_trainables = [var for _name, var in cur_vars if var.trainable]
|
692 |
+
layers.append((layer_name, layer_output, layer_trainables))
|
693 |
+
|
694 |
+
recurse(self.scope, self.list_ops(), list(self._get_vars().items()), 0)
|
695 |
+
return layers
|
696 |
+
|
697 |
+
def print_layers(self, title: str = None, hide_layers_with_no_params: bool = False) -> None:
|
698 |
+
"""Print a summary table of the network structure."""
|
699 |
+
rows = [[title if title is not None else self.name, "Params", "OutputShape", "WeightShape"]]
|
700 |
+
rows += [["---"] * 4]
|
701 |
+
total_params = 0
|
702 |
+
|
703 |
+
for layer_name, layer_output, layer_trainables in self.list_layers():
|
704 |
+
num_params = sum(int(np.prod(var.shape.as_list())) for var in layer_trainables)
|
705 |
+
weights = [var for var in layer_trainables if var.name.endswith("/weight:0")]
|
706 |
+
weights.sort(key=lambda x: len(x.name))
|
707 |
+
if len(weights) == 0 and len(layer_trainables) == 1:
|
708 |
+
weights = layer_trainables
|
709 |
+
total_params += num_params
|
710 |
+
|
711 |
+
if not hide_layers_with_no_params or num_params != 0:
|
712 |
+
num_params_str = str(num_params) if num_params > 0 else "-"
|
713 |
+
output_shape_str = str(layer_output.shape)
|
714 |
+
weight_shape_str = str(weights[0].shape) if len(weights) >= 1 else "-"
|
715 |
+
rows += [[layer_name, num_params_str, output_shape_str, weight_shape_str]]
|
716 |
+
|
717 |
+
rows += [["---"] * 4]
|
718 |
+
rows += [["Total", str(total_params), "", ""]]
|
719 |
+
|
720 |
+
widths = [max(len(cell) for cell in column) for column in zip(*rows)]
|
721 |
+
print()
|
722 |
+
for row in rows:
|
723 |
+
print(" ".join(cell + " " * (width - len(cell)) for cell, width in zip(row, widths)))
|
724 |
+
print()
|
725 |
+
|
726 |
+
def setup_weight_histograms(self, title: str = None) -> None:
|
727 |
+
"""Construct summary ops to include histograms of all trainable parameters in TensorBoard."""
|
728 |
+
if title is None:
|
729 |
+
title = self.name
|
730 |
+
|
731 |
+
with tf.name_scope(None), tf.device(None), tf.control_dependencies(None):
|
732 |
+
for local_name, var in self._get_trainables().items():
|
733 |
+
if "/" in local_name:
|
734 |
+
p = local_name.split("/")
|
735 |
+
name = title + "_" + p[-1] + "/" + "_".join(p[:-1])
|
736 |
+
else:
|
737 |
+
name = title + "_toplevel/" + local_name
|
738 |
+
|
739 |
+
tf.summary.histogram(name, var)
|
740 |
+
|
741 |
+
#----------------------------------------------------------------------------
|
742 |
+
# Backwards-compatible emulation of legacy output transformation in Network.run().
|
743 |
+
|
744 |
+
_print_legacy_warning = True
|
745 |
+
|
746 |
+
def _handle_legacy_output_transforms(output_transform, dynamic_kwargs):
|
747 |
+
global _print_legacy_warning
|
748 |
+
legacy_kwargs = ["out_mul", "out_add", "out_shrink", "out_dtype"]
|
749 |
+
if not any(kwarg in dynamic_kwargs for kwarg in legacy_kwargs):
|
750 |
+
return output_transform, dynamic_kwargs
|
751 |
+
|
752 |
+
if _print_legacy_warning:
|
753 |
+
_print_legacy_warning = False
|
754 |
+
print()
|
755 |
+
print("WARNING: Old-style output transformations in Network.run() are deprecated.")
|
756 |
+
print("Consider using 'output_transform=dict(func=tflib.convert_images_to_uint8)'")
|
757 |
+
print("instead of 'out_mul=127.5, out_add=127.5, out_dtype=np.uint8'.")
|
758 |
+
print()
|
759 |
+
assert output_transform is None
|
760 |
+
|
761 |
+
new_kwargs = dict(dynamic_kwargs)
|
762 |
+
new_transform = {kwarg: new_kwargs.pop(kwarg) for kwarg in legacy_kwargs if kwarg in dynamic_kwargs}
|
763 |
+
new_transform["func"] = _legacy_output_transform_func
|
764 |
+
return new_transform, new_kwargs
|
765 |
+
|
766 |
+
def _legacy_output_transform_func(*expr, out_mul=1.0, out_add=0.0, out_shrink=1, out_dtype=None):
|
767 |
+
if out_mul != 1.0:
|
768 |
+
expr = [x * out_mul for x in expr]
|
769 |
+
|
770 |
+
if out_add != 0.0:
|
771 |
+
expr = [x + out_add for x in expr]
|
772 |
+
|
773 |
+
if out_shrink > 1:
|
774 |
+
ksize = [1, 1, out_shrink, out_shrink]
|
775 |
+
expr = [tf.nn.avg_pool(x, ksize=ksize, strides=ksize, padding="VALID", data_format="NCHW") for x in expr]
|
776 |
+
|
777 |
+
if out_dtype is not None:
|
778 |
+
if tf.as_dtype(out_dtype).is_integer:
|
779 |
+
expr = [tf.round(x) for x in expr]
|
780 |
+
expr = [tf.saturate_cast(x, out_dtype) for x in expr]
|
781 |
+
return expr
|