Spaces:
Paused
Paused
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down | |
import re | |
import unicodedata | |
def is_paragraph_break(match): | |
""" | |
根据给定的匹配结果来判断换行符是否表示段落分隔。 | |
如果换行符前为句子结束标志(句号,感叹号,问号),且下一个字符为大写字母,则换行符更有可能表示段落分隔。 | |
也可以根据之前的内容长度来判断段落是否已经足够长。 | |
""" | |
prev_char, next_char = match.groups() | |
# 句子结束标志 | |
sentence_endings = ".!?" | |
# 设定一个最小段落长度阈值 | |
min_paragraph_length = 140 | |
if prev_char in sentence_endings and next_char.isupper() and len(match.string[:match.start(1)]) > min_paragraph_length: | |
return "\n\n" | |
else: | |
return " " | |
def normalize_text(text): | |
""" | |
通过把连字(ligatures)等文本特殊符号转换为其基本形式来对文本进行归一化处理。 | |
例如,将连字 "fi" 转换为 "f" 和 "i"。 | |
""" | |
# 对文本进行归一化处理,分解连字 | |
normalized_text = unicodedata.normalize("NFKD", text) | |
# 替换其他特殊字符 | |
cleaned_text = re.sub(r'[^\x00-\x7F]+', '', normalized_text) | |
return cleaned_text | |
def clean_text(raw_text): | |
""" | |
对从 PDF 提取出的原始文本进行清洗和格式化处理。 | |
1. 对原始文本进行归一化处理。 | |
2. 替换跨行的连词,例如 “Espe-\ncially” 转换为 “Especially”。 | |
3. 根据 heuristic 规则判断换行符是否是段落分隔,并相应地进行替换。 | |
""" | |
# 对文本进行归一化处理 | |
normalized_text = normalize_text(raw_text) | |
# 替换跨行的连词 | |
text = re.sub(r'(\w+-\n\w+)', | |
lambda m: m.group(1).replace('-\n', ''), normalized_text) | |
# 根据前后相邻字符的特点,找到原文本中的换行符 | |
newlines = re.compile(r'(\S)\n(\S)') | |
# 根据 heuristic 规则,用空格或段落分隔符替换原换行符 | |
final_text = re.sub(newlines, lambda m: m.group( | |
1) + is_paragraph_break(m) + m.group(2), text) | |
return final_text.strip() | |
def read_and_clean_pdf_text(fp): | |
import fitz, re | |
import numpy as np | |
# file_content = "" | |
with fitz.open(fp) as doc: | |
meta_txt = [] | |
meta_font = [] | |
for index, page in enumerate(doc): | |
# file_content += page.get_text() | |
text_areas = page.get_text("dict") # 获取页面上的文本信息 | |
# 块元提取 for each word segment with in line for each line cross-line words for each block | |
meta_txt.extend( [ " ".join(["".join( [wtf['text'] for wtf in l['spans'] ]) for l in t['lines'] ]).replace('- ','') for t in text_areas['blocks'] if 'lines' in t]) | |
meta_font.extend([ np.mean( [ np.mean([wtf['size'] for wtf in l['spans'] ]) for l in t['lines'] ]) for t in text_areas['blocks'] if 'lines' in t]) | |
if index==0: | |
page_one_meta = [" ".join(["".join( [wtf['text'] for wtf in l['spans'] ]) for l in t['lines'] ]).replace('- ','') for t in text_areas['blocks'] if 'lines' in t] | |
def 把字符太少的块清除为回车(meta_txt): | |
for index, block_txt in enumerate(meta_txt): | |
if len(block_txt) < 100: | |
meta_txt[index] = '\n' | |
return meta_txt | |
meta_txt = 把字符太少的块清除为回车(meta_txt) | |
def 清理多余的空行(meta_txt): | |
for index in reversed(range(1, len(meta_txt))): | |
if meta_txt[index] == '\n' and meta_txt[index-1] == '\n': | |
meta_txt.pop(index) | |
return meta_txt | |
meta_txt = 清理多余的空行(meta_txt) | |
def 合并小写开头的段落块(meta_txt): | |
def starts_with_lowercase_word(s): | |
pattern = r"^[a-z]+" | |
match = re.match(pattern, s) | |
if match: | |
return True | |
else: | |
return False | |
for _ in range(100): | |
for index, block_txt in enumerate(meta_txt): | |
if starts_with_lowercase_word(block_txt): | |
if meta_txt[index-1]!='\n': meta_txt[index-1] += ' ' | |
else: meta_txt[index-1] = '' | |
meta_txt[index-1] += meta_txt[index] | |
meta_txt[index] = '\n' | |
return meta_txt | |
meta_txt = 合并小写开头的段落块(meta_txt) | |
meta_txt = 清理多余的空行(meta_txt) | |
meta_txt = '\n'.join(meta_txt) | |
# 清除重复的换行 | |
for _ in range(5): | |
meta_txt = meta_txt.replace('\n\n','\n') | |
# 换行 -> 双换行 | |
meta_txt = meta_txt.replace('\n', '\n\n') | |
return meta_txt, page_one_meta | |
def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt, WEB_PORT): | |
import glob | |
import os | |
# 基本信息:功能、贡献者 | |
chatbot.append([ | |
"函数插件功能?", | |
"批量总结PDF文档。函数插件贡献者: Binary-Husky(二进制哈士奇)"]) | |
yield chatbot, history, '正常' | |
# 尝试导入依赖,如果缺少依赖,则给出安装建议 | |
try: | |
import fitz, tiktoken | |
except: | |
report_execption(chatbot, history, | |
a=f"解析项目: {txt}", | |
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。") | |
yield chatbot, history, '正常' | |
return | |
# 清空历史,以免输入溢出 | |
history = [] | |
# 检测输入参数,如没有给定输入参数,直接退出 | |
if os.path.exists(txt): | |
project_folder = txt | |
else: | |
if txt == "": | |
txt = '空空如也的输入栏' | |
report_execption(chatbot, history, | |
a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}") | |
yield chatbot, history, '正常' | |
return | |
# 搜索需要处理的文件清单 | |
file_manifest = [f for f in glob.glob( | |
f'{project_folder}/**/*.pdf', recursive=True)] | |
# 如果没找到任何文件 | |
if len(file_manifest) == 0: | |
report_execption(chatbot, history, | |
a=f"解析项目: {txt}", b=f"找不到任何.tex或.pdf文件: {txt}") | |
yield chatbot, history, '正常' | |
return | |
# 开始正式执行任务 | |
yield from 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt) | |
def request_gpt_model_in_new_thread_with_ui_alive(inputs, inputs_show_user, top_p, temperature, chatbot, history, sys_prompt, refresh_interval=0.2): | |
import time | |
from concurrent.futures import ThreadPoolExecutor | |
from request_llm.bridge_chatgpt import predict_no_ui_long_connection | |
# 用户反馈 | |
chatbot.append([inputs_show_user, ""]); msg = '正常' | |
yield chatbot, [], msg | |
executor = ThreadPoolExecutor(max_workers=16) | |
mutable = ["", time.time()] | |
future = executor.submit(lambda: | |
predict_no_ui_long_connection(inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable) | |
) | |
while True: | |
# yield一次以刷新前端页面 | |
time.sleep(refresh_interval) | |
# “喂狗”(看门狗) | |
mutable[1] = time.time() | |
if future.done(): break | |
chatbot[-1] = [chatbot[-1][0], mutable[0]]; msg = "正常" | |
yield chatbot, [], msg | |
return future.result() | |
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inputs_array, inputs_show_user_array, top_p, temperature, chatbot, history_array, sys_prompt_array, refresh_interval, max_workers=10, scroller_max_len=30): | |
import time | |
from concurrent.futures import ThreadPoolExecutor | |
from request_llm.bridge_chatgpt import predict_no_ui_long_connection | |
assert len(inputs_array) == len(history_array) | |
assert len(inputs_array) == len(sys_prompt_array) | |
executor = ThreadPoolExecutor(max_workers=max_workers) | |
n_frag = len(inputs_array) | |
# 异步原子 | |
mutable = [["", time.time()] for _ in range(n_frag)] | |
def _req_gpt(index, inputs, history, sys_prompt): | |
gpt_say = predict_no_ui_long_connection( | |
inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable[index] | |
) | |
return gpt_say | |
# 异步任务开始 | |
futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)] | |
cnt = 0 | |
while True: | |
# yield一次以刷新前端页面 | |
time.sleep(refresh_interval); cnt += 1 | |
worker_done = [h.done() for h in futures] | |
if all(worker_done): executor.shutdown(); break | |
# 更好的UI视觉效果 | |
observe_win = [] | |
# 每个线程都要“喂狗”(看门狗) | |
for thread_index, _ in enumerate(worker_done): mutable[thread_index][1] = time.time() | |
# 在前端打印些好玩的东西 | |
for thread_index, _ in enumerate(worker_done): | |
print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\ | |
replace('\n','').replace('```','...').replace(' ','.').replace('<br/>','.....').replace('$','.')+"`... ]" | |
observe_win.append(print_something_really_funny) | |
stat_str = ''.join([f'执行中: {obs}\n\n' if not done else '已完成\n\n' for done, obs in zip(worker_done, observe_win)]) | |
chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt%10+1))]; msg = "正常" | |
yield chatbot, [], msg | |
# 异步任务结束 | |
gpt_response_collection = [] | |
for inputs_show_user, f in zip(inputs_show_user_array, futures): | |
gpt_res = f.result() | |
gpt_response_collection.extend([inputs_show_user, gpt_res]) | |
return gpt_response_collection | |
def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt): | |
import time | |
import glob | |
import os | |
import fitz | |
import tiktoken | |
TOKEN_LIMIT_PER_FRAGMENT = 1600 | |
for index, fp in enumerate(file_manifest): | |
# 读取PDF文件 | |
file_content, page_one = read_and_clean_pdf_text(fp) | |
# 递归地切割PDF文件 | |
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf | |
enc = tiktoken.get_encoding("gpt2") | |
get_token_num = lambda txt: len(enc.encode(txt)) | |
# 分解文本 | |
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf( | |
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT) | |
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf( | |
txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4) | |
# 为了更好的效果,我们剥离Introduction之后的部分 | |
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0] | |
# 单线,获取文章meta信息 | |
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive( | |
inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}", | |
inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。", | |
top_p=top_p, temperature=temperature, | |
chatbot=chatbot, history=[], | |
sys_prompt="Your job is to collect information from materials。", | |
) | |
# 多线,翻译 | |
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency( | |
inputs_array = [f"以下是你需要翻译的文章段落:\n{frag}" for frag in paper_fragments], | |
inputs_show_user_array = [f"" for _ in paper_fragments], | |
top_p=top_p, temperature=temperature, | |
chatbot=chatbot, | |
history_array=[[paper_meta] for _ in paper_fragments], | |
sys_prompt_array=["请你作为一个学术翻译,把整个段落翻译成中文,要求语言简洁,禁止重复输出原文。" for _ in paper_fragments], | |
max_workers=16 # OpenAI所允许的最大并行过载 | |
) | |
final = ["", paper_meta_info + '\n\n---\n\n---\n\n---\n\n'].extend(gpt_response_collection) | |
res = write_results_to_file(final) | |
chatbot.append((f"{fp}完成了吗?", res)); msg = "完成" | |
yield chatbot, history, msg | |