Spaces:
Runtime error
Runtime error
"""This script is to load 3D face model for Deep3DFaceRecon_pytorch | |
""" | |
import os.path as osp | |
from array import array | |
import numpy as np | |
from PIL import Image | |
from scipy.io import loadmat | |
from scipy.io import savemat | |
# load expression basis | |
def LoadExpBasis(bfm_folder="BFM"): | |
n_vertex = 53215 | |
Expbin = open(osp.join(bfm_folder, "Exp_Pca.bin"), "rb") | |
exp_dim = array("i") | |
exp_dim.fromfile(Expbin, 1) | |
expMU = array("f") | |
expPC = array("f") | |
expMU.fromfile(Expbin, 3 * n_vertex) | |
expPC.fromfile(Expbin, 3 * exp_dim[0] * n_vertex) | |
Expbin.close() | |
expPC = np.array(expPC) | |
expPC = np.reshape(expPC, [exp_dim[0], -1]) | |
expPC = np.transpose(expPC) | |
expEV = np.loadtxt(osp.join(bfm_folder, "std_exp.txt")) | |
return expPC, expEV | |
# transfer original BFM09 to our face model | |
def transferBFM09(bfm_folder="BFM"): | |
print("Transfer BFM09 to BFM_model_front......") | |
original_BFM = loadmat(osp.join(bfm_folder, "01_MorphableModel.mat")) | |
shapePC = original_BFM["shapePC"] # shape basis | |
shapeEV = original_BFM["shapeEV"] # corresponding eigen value | |
shapeMU = original_BFM["shapeMU"] # mean face | |
texPC = original_BFM["texPC"] # texture basis | |
texEV = original_BFM["texEV"] # eigen value | |
texMU = original_BFM["texMU"] # mean texture | |
expPC, expEV = LoadExpBasis() | |
# transfer BFM09 to our face model | |
idBase = shapePC * np.reshape(shapeEV, [-1, 199]) | |
idBase = idBase / 1e5 # unify the scale to decimeter | |
idBase = idBase[:, :80] # use only first 80 basis | |
exBase = expPC * np.reshape(expEV, [-1, 79]) | |
exBase = exBase / 1e5 # unify the scale to decimeter | |
exBase = exBase[:, :64] # use only first 64 basis | |
texBase = texPC * np.reshape(texEV, [-1, 199]) | |
texBase = texBase[:, :80] # use only first 80 basis | |
# our face model is cropped along face landmarks and contains only 35709 vertex. | |
# original BFM09 contains 53490 vertex, and expression basis provided by Guo et al. contains 53215 vertex. | |
# thus we select corresponding vertex to get our face model. | |
index_exp = loadmat(osp.join(bfm_folder, "BFM_front_idx.mat")) | |
index_exp = index_exp["idx"].astype(np.int32) - 1 # starts from 0 (to 53215) | |
index_shape = loadmat(osp.join(bfm_folder, "BFM_exp_idx.mat")) | |
index_shape = index_shape["trimIndex"].astype(np.int32) - 1 # starts from 0 (to 53490) | |
index_shape = index_shape[index_exp] | |
idBase = np.reshape(idBase, [-1, 3, 80]) | |
idBase = idBase[index_shape, :, :] | |
idBase = np.reshape(idBase, [-1, 80]) | |
texBase = np.reshape(texBase, [-1, 3, 80]) | |
texBase = texBase[index_shape, :, :] | |
texBase = np.reshape(texBase, [-1, 80]) | |
exBase = np.reshape(exBase, [-1, 3, 64]) | |
exBase = exBase[index_exp, :, :] | |
exBase = np.reshape(exBase, [-1, 64]) | |
meanshape = np.reshape(shapeMU, [-1, 3]) / 1e5 | |
meanshape = meanshape[index_shape, :] | |
meanshape = np.reshape(meanshape, [1, -1]) | |
meantex = np.reshape(texMU, [-1, 3]) | |
meantex = meantex[index_shape, :] | |
meantex = np.reshape(meantex, [1, -1]) | |
# other info contains triangles, region used for computing photometric loss, | |
# region used for skin texture regularization, and 68 landmarks index etc. | |
other_info = loadmat(osp.join(bfm_folder, "facemodel_info.mat")) | |
frontmask2_idx = other_info["frontmask2_idx"] | |
skinmask = other_info["skinmask"] | |
keypoints = other_info["keypoints"] | |
point_buf = other_info["point_buf"] | |
tri = other_info["tri"] | |
tri_mask2 = other_info["tri_mask2"] | |
# save our face model | |
savemat( | |
osp.join(bfm_folder, "BFM_model_front.mat"), | |
{ | |
"meanshape": meanshape, | |
"meantex": meantex, | |
"idBase": idBase, | |
"exBase": exBase, | |
"texBase": texBase, | |
"tri": tri, | |
"point_buf": point_buf, | |
"tri_mask2": tri_mask2, | |
"keypoints": keypoints, | |
"frontmask2_idx": frontmask2_idx, | |
"skinmask": skinmask, | |
}, | |
) | |
# load landmarks for standard face, which is used for image preprocessing | |
def load_lm3d(bfm_folder): | |
Lm3D = loadmat(osp.join(bfm_folder, "similarity_Lm3D_all.mat")) | |
Lm3D = Lm3D["lm"] | |
# calculate 5 facial landmarks using 68 landmarks | |
lm_idx = np.array([31, 37, 40, 43, 46, 49, 55]) - 1 | |
Lm3D = np.stack( | |
[ | |
Lm3D[lm_idx[0], :], | |
np.mean(Lm3D[lm_idx[[1, 2]], :], 0), | |
np.mean(Lm3D[lm_idx[[3, 4]], :], 0), | |
Lm3D[lm_idx[5], :], | |
Lm3D[lm_idx[6], :], | |
], | |
axis=0, | |
) | |
Lm3D = Lm3D[[1, 2, 0, 3, 4], :] | |
return Lm3D | |