Spaces:
Runtime error
Runtime error
"""This script is the test script for Deep3DFaceRecon_pytorch | |
""" | |
import os | |
import numpy as np | |
import torch | |
from data import create_dataset | |
from data.flist_dataset import default_flist_reader | |
from options.test_options import TestOptions | |
from PIL import Image | |
from scipy.io import loadmat | |
from scipy.io import savemat | |
from util.load_mats import load_lm3d | |
from util.preprocess import align_img | |
from util.visualizer import MyVisualizer | |
from models import create_model | |
def get_data_path(root="examples"): | |
im_path = [os.path.join(root, i) for i in sorted(os.listdir(root)) if i.endswith("png") or i.endswith("jpg")] | |
lm_path = [i.replace("png", "txt").replace("jpg", "txt") for i in im_path] | |
lm_path = [ | |
os.path.join(i.replace(i.split(os.path.sep)[-1], ""), "detections", i.split(os.path.sep)[-1]) for i in lm_path | |
] | |
return im_path, lm_path | |
def read_data(im_path, lm_path, lm3d_std, to_tensor=True): | |
# to RGB | |
im = Image.open(im_path).convert("RGB") | |
W, H = im.size | |
lm = np.loadtxt(lm_path).astype(np.float32) | |
lm = lm.reshape([-1, 2]) | |
lm[:, -1] = H - 1 - lm[:, -1] | |
_, im, lm, _ = align_img(im, lm, lm3d_std) | |
if to_tensor: | |
im = torch.tensor(np.array(im) / 255.0, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0) | |
lm = torch.tensor(lm).unsqueeze(0) | |
return im, lm | |
def main(rank, opt, name="examples"): | |
device = torch.device(rank) | |
torch.cuda.set_device(device) | |
model = create_model(opt) | |
model.setup(opt) | |
model.device = device | |
model.parallelize() | |
model.eval() | |
visualizer = MyVisualizer(opt) | |
im_path, lm_path = get_data_path(name) | |
lm3d_std = load_lm3d(opt.bfm_folder) | |
for i in range(len(im_path)): | |
print(i, im_path[i]) | |
img_name = im_path[i].split(os.path.sep)[-1].replace(".png", "").replace(".jpg", "") | |
if not os.path.isfile(lm_path[i]): | |
print("%s is not found !!!" % lm_path[i]) | |
continue | |
im_tensor, lm_tensor = read_data(im_path[i], lm_path[i], lm3d_std) | |
data = {"imgs": im_tensor, "lms": lm_tensor} | |
model.set_input(data) # unpack data from data loader | |
model.test() # run inference | |
visuals = model.get_current_visuals() # get image results | |
visualizer.display_current_results( | |
visuals, | |
0, | |
opt.epoch, | |
dataset=name.split(os.path.sep)[-1], | |
save_results=True, | |
count=i, | |
name=img_name, | |
add_image=False, | |
) | |
model.save_mesh( | |
os.path.join( | |
visualizer.img_dir, name.split(os.path.sep)[-1], "epoch_%s_%06d" % (opt.epoch, 0), img_name + ".obj" | |
) | |
) # save reconstruction meshes | |
model.save_coeff( | |
os.path.join( | |
visualizer.img_dir, name.split(os.path.sep)[-1], "epoch_%s_%06d" % (opt.epoch, 0), img_name + ".mat" | |
) | |
) # save predicted coefficients | |
if __name__ == "__main__": | |
opt = TestOptions().parse() # get test options | |
main(0, opt, opt.img_folder) | |