xuehongyang
ser
83d8d3c
"""This script is the test script for Deep3DFaceRecon_pytorch
"""
import os
import numpy as np
import torch
from data import create_dataset
from data.flist_dataset import default_flist_reader
from options.test_options import TestOptions
from PIL import Image
from scipy.io import loadmat
from scipy.io import savemat
from util.load_mats import load_lm3d
from util.preprocess import align_img
from util.visualizer import MyVisualizer
from models import create_model
def get_data_path(root="examples"):
im_path = [os.path.join(root, i) for i in sorted(os.listdir(root)) if i.endswith("png") or i.endswith("jpg")]
lm_path = [i.replace("png", "txt").replace("jpg", "txt") for i in im_path]
lm_path = [
os.path.join(i.replace(i.split(os.path.sep)[-1], ""), "detections", i.split(os.path.sep)[-1]) for i in lm_path
]
return im_path, lm_path
def read_data(im_path, lm_path, lm3d_std, to_tensor=True):
# to RGB
im = Image.open(im_path).convert("RGB")
W, H = im.size
lm = np.loadtxt(lm_path).astype(np.float32)
lm = lm.reshape([-1, 2])
lm[:, -1] = H - 1 - lm[:, -1]
_, im, lm, _ = align_img(im, lm, lm3d_std)
if to_tensor:
im = torch.tensor(np.array(im) / 255.0, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0)
lm = torch.tensor(lm).unsqueeze(0)
return im, lm
def main(rank, opt, name="examples"):
device = torch.device(rank)
torch.cuda.set_device(device)
model = create_model(opt)
model.setup(opt)
model.device = device
model.parallelize()
model.eval()
visualizer = MyVisualizer(opt)
im_path, lm_path = get_data_path(name)
lm3d_std = load_lm3d(opt.bfm_folder)
for i in range(len(im_path)):
print(i, im_path[i])
img_name = im_path[i].split(os.path.sep)[-1].replace(".png", "").replace(".jpg", "")
if not os.path.isfile(lm_path[i]):
print("%s is not found !!!" % lm_path[i])
continue
im_tensor, lm_tensor = read_data(im_path[i], lm_path[i], lm3d_std)
data = {"imgs": im_tensor, "lms": lm_tensor}
model.set_input(data) # unpack data from data loader
model.test() # run inference
visuals = model.get_current_visuals() # get image results
visualizer.display_current_results(
visuals,
0,
opt.epoch,
dataset=name.split(os.path.sep)[-1],
save_results=True,
count=i,
name=img_name,
add_image=False,
)
model.save_mesh(
os.path.join(
visualizer.img_dir, name.split(os.path.sep)[-1], "epoch_%s_%06d" % (opt.epoch, 0), img_name + ".obj"
)
) # save reconstruction meshes
model.save_coeff(
os.path.join(
visualizer.img_dir, name.split(os.path.sep)[-1], "epoch_%s_%06d" % (opt.epoch, 0), img_name + ".mat"
)
) # save predicted coefficients
if __name__ == "__main__":
opt = TestOptions().parse() # get test options
main(0, opt, opt.img_folder)