Spaces:
Runtime error
Runtime error
"""This script contains the training options for Deep3DFaceRecon_pytorch | |
""" | |
from util import util | |
from .base_options import BaseOptions | |
class TrainOptions(BaseOptions): | |
"""This class includes training options. | |
It also includes shared options defined in BaseOptions. | |
""" | |
def initialize(self, parser): | |
parser = BaseOptions.initialize(self, parser) | |
# dataset parameters | |
# for train | |
parser.add_argument("--data_root", type=str, default="./", help="dataset root") | |
parser.add_argument( | |
"--flist", type=str, default="datalist/train/masks.txt", help="list of mask names of training set" | |
) | |
parser.add_argument("--batch_size", type=int, default=32) | |
parser.add_argument( | |
"--dataset_mode", type=str, default="flist", help="chooses how datasets are loaded. [None | flist]" | |
) | |
parser.add_argument( | |
"--serial_batches", | |
action="store_true", | |
help="if true, takes images in order to make batches, otherwise takes them randomly", | |
) | |
parser.add_argument("--num_threads", default=4, type=int, help="# threads for loading data") | |
parser.add_argument( | |
"--max_dataset_size", | |
type=int, | |
default=float("inf"), | |
help="Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.", | |
) | |
parser.add_argument( | |
"--preprocess", | |
type=str, | |
default="shift_scale_rot_flip", | |
help="scaling and cropping of images at load time [shift_scale_rot_flip | shift_scale | shift | shift_rot_flip ]", | |
) | |
parser.add_argument( | |
"--use_aug", type=util.str2bool, nargs="?", const=True, default=True, help="whether use data augmentation" | |
) | |
# for val | |
parser.add_argument( | |
"--flist_val", type=str, default="datalist/val/masks.txt", help="list of mask names of val set" | |
) | |
parser.add_argument("--batch_size_val", type=int, default=32) | |
# visualization parameters | |
parser.add_argument( | |
"--display_freq", type=int, default=1000, help="frequency of showing training results on screen" | |
) | |
parser.add_argument( | |
"--print_freq", type=int, default=100, help="frequency of showing training results on console" | |
) | |
# network saving and loading parameters | |
parser.add_argument("--save_latest_freq", type=int, default=5000, help="frequency of saving the latest results") | |
parser.add_argument( | |
"--save_epoch_freq", type=int, default=1, help="frequency of saving checkpoints at the end of epochs" | |
) | |
parser.add_argument("--evaluation_freq", type=int, default=5000, help="evaluation freq") | |
parser.add_argument("--save_by_iter", action="store_true", help="whether saves model by iteration") | |
parser.add_argument("--continue_train", action="store_true", help="continue training: load the latest model") | |
parser.add_argument( | |
"--epoch_count", | |
type=int, | |
default=1, | |
help="the starting epoch count, we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>, ...", | |
) | |
parser.add_argument("--phase", type=str, default="train", help="train, val, test, etc") | |
parser.add_argument("--pretrained_name", type=str, default=None, help="resume training from another checkpoint") | |
# training parameters | |
parser.add_argument("--n_epochs", type=int, default=20, help="number of epochs with the initial learning rate") | |
parser.add_argument("--lr", type=float, default=0.0001, help="initial learning rate for adam") | |
parser.add_argument( | |
"--lr_policy", type=str, default="step", help="learning rate policy. [linear | step | plateau | cosine]" | |
) | |
parser.add_argument( | |
"--lr_decay_epochs", type=int, default=10, help="multiply by a gamma every lr_decay_epochs epoches" | |
) | |
self.isTrain = True | |
return parser | |