Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
from __future__ import annotations | |
import argparse | |
import functools | |
import os | |
import pathlib | |
import subprocess | |
import tarfile | |
try: | |
import detectron2 | |
except: | |
command = 'pip install git+https://github.com/facebookresearch/detectron2@v0.6' | |
subprocess.call(command.split()) | |
try: | |
import adet | |
except: | |
command = 'pip install git+https://github.com/aim-uofa/AdelaiDet@7bf9d87' | |
subprocess.call(command.split()) | |
import gradio as gr | |
import huggingface_hub | |
import numpy as np | |
import torch | |
from adet.config import get_cfg | |
from detectron2.data.detection_utils import read_image | |
from detectron2.engine.defaults import DefaultPredictor | |
from detectron2.utils.visualizer import Visualizer | |
TOKEN = os.environ['TOKEN'] | |
MODEL_REPO = 'hysts/Yet-Another-Anime-Segmenter' | |
MODEL_FILENAME = 'SOLOv2.pth' | |
CONFIG_FILENAME = 'SOLOv2.yaml' | |
def parse_args() -> argparse.Namespace: | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--device', type=str, default='cpu') | |
parser.add_argument('--class-score-slider-step', type=float, default=0.05) | |
parser.add_argument('--class-score-threshold', type=float, default=0.1) | |
parser.add_argument('--mask-score-slider-step', type=float, default=0.05) | |
parser.add_argument('--mask-score-threshold', type=float, default=0.5) | |
parser.add_argument('--theme', type=str) | |
parser.add_argument('--live', action='store_true') | |
parser.add_argument('--share', action='store_true') | |
parser.add_argument('--port', type=int) | |
parser.add_argument('--disable-queue', | |
dest='enable_queue', | |
action='store_false') | |
parser.add_argument('--allow-flagging', type=str, default='never') | |
parser.add_argument('--allow-screenshot', action='store_true') | |
return parser.parse_args() | |
def load_sample_image_paths() -> list[pathlib.Path]: | |
image_dir = pathlib.Path('images') | |
if not image_dir.exists(): | |
dataset_repo = 'hysts/sample-images-TADNE' | |
path = huggingface_hub.hf_hub_download(dataset_repo, | |
'images.tar.gz', | |
repo_type='dataset', | |
use_auth_token=TOKEN) | |
with tarfile.open(path) as f: | |
f.extractall() | |
return sorted(image_dir.glob('*')) | |
def load_model(device: torch.device) -> DefaultPredictor: | |
config_path = huggingface_hub.hf_hub_download(MODEL_REPO, | |
CONFIG_FILENAME, | |
use_auth_token=TOKEN) | |
model_path = huggingface_hub.hf_hub_download(MODEL_REPO, | |
MODEL_FILENAME, | |
use_auth_token=TOKEN) | |
cfg = get_cfg() | |
cfg.merge_from_file(config_path) | |
cfg.MODEL.WEIGHTS = model_path | |
cfg.MODEL.DEVICE = device.type | |
cfg.freeze() | |
return DefaultPredictor(cfg) | |
def predict(image, class_score_threshold: float, mask_score_threshold: float, | |
model: DefaultPredictor) -> tuple[np.ndarray, np.ndarray]: | |
model.score_threshold = class_score_threshold | |
model.mask_threshold = mask_score_threshold | |
image = read_image(image.name, format='BGR') | |
preds = model(image) | |
instances = preds['instances'].to('cpu') | |
visualizer = Visualizer(image[:, :, ::-1]) | |
vis = visualizer.draw_instance_predictions(predictions=instances) | |
vis = vis.get_image() | |
masked = image.copy()[:, :, ::-1] | |
mask = instances.pred_masks.cpu().numpy().astype(int).max(axis=0) | |
masked[mask == 0] = 255 | |
return vis, masked | |
def main(): | |
gr.close_all() | |
args = parse_args() | |
device = torch.device(args.device) | |
image_paths = load_sample_image_paths() | |
examples = [[ | |
path.as_posix(), args.class_score_threshold, args.mask_score_threshold | |
] for path in image_paths] | |
model = load_model(device) | |
func = functools.partial(predict, model=model) | |
func = functools.update_wrapper(func, predict) | |
repo_url = 'https://github.com/zymk9/Yet-Another-Anime-Segmenter' | |
title = 'zymk9/Yet-Another-Anime-Segmenter' | |
description = f'A demo for {repo_url}' | |
article = None | |
gr.Interface( | |
func, | |
[ | |
gr.inputs.Image(type='file', label='Input'), | |
gr.inputs.Slider(0, | |
1, | |
step=args.class_score_slider_step, | |
default=args.class_score_threshold, | |
label='Class Score Threshold'), | |
gr.inputs.Slider(0, | |
1, | |
step=args.mask_score_slider_step, | |
default=args.mask_score_threshold, | |
label='Mask Score Threshold'), | |
], | |
[ | |
gr.outputs.Image(label='Instances'), | |
gr.outputs.Image(label='Masked'), | |
], | |
theme=args.theme, | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
allow_screenshot=args.allow_screenshot, | |
allow_flagging=args.allow_flagging, | |
live=args.live, | |
).launch( | |
enable_queue=args.enable_queue, | |
server_port=args.port, | |
share=args.share, | |
) | |
if __name__ == '__main__': | |
main() | |