hvaldez's picture
first commit
a17aefb verified
# coding=utf-8
# Copyright 2021 Google AI, Ross Wightman, The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch BEiT model. """
import collections.abc
import math
import numpy as np
from dataclasses import dataclass
from typing import Optional, Tuple
import zCurve
import hilbert
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from einops import rearrange, repeat
from transformers.activations import ACT2FN
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, MaskedLMOutput, SequenceClassifierOutput
from transformers.modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
from svitt.sparse_config import BeitConfig
_CONFIG_FOR_DOC = "BeitConfig"
_CHECKPOINT_FOR_DOC = "microsoft/beit-base-patch16-224"
BEIT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"microsoft/beit-base-patch16-224",
# See all BEiT models at https://huggingface.co/models?filter=beit
]
@dataclass
class BeitModelOutputWithPooling(BaseModelOutputWithPooling):
"""
Class for outputs of :class:`~transformers.BeitModel`.
Args:
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, hidden_size)`):
Average of the last layer hidden states of the patch tokens (excluding the `[CLS]` token) if
`config.use_mean_pooling` is set to True. If set to False, then the final hidden state of the `[CLS]` token
will be returned.
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
token_idx: Optional[Tuple[torch.LongTensor]] = None
@dataclass
class BeitModelOutput(BaseModelOutput):
token_idx: Optional[Tuple[torch.LongTensor]] = None
# Inspired by
# https://github.com/rwightman/pytorch-image-models/blob/b9bd960a032c75ca6b808ddeed76bee5f3ed4972/timm/models/layers/helpers.py
# From PyTorch internals
def to_2tuple(x):
if isinstance(x, collections.abc.Iterable):
return x
return (x, x)
# Based on https://github.com/rwightman/pytorch-image-models/blob/a2727c1bf78ba0d7b5727f5f95e37fb7f8866b1f/timm/models/layers/drop.py
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob=None):
super().__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
# Based on timm implementation, which can be found here:
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
class BeitEmbeddings(nn.Module):
"""
Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
"""
def __init__(self, config):
super().__init__()
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
if config.use_mask_token:
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
else:
self.mask_token = None
self.patch_embeddings = PatchEmbeddings(
image_size=config.image_size,
patch_size=config.patch_size,
num_channels=config.num_channels,
embed_dim=config.hidden_size,
)
num_patches = self.patch_embeddings.num_patches
if config.use_absolute_position_embeddings:
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size))
else:
self.position_embeddings = None
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, pixel_values, bool_masked_pos=None):
if pixel_values.ndim == 5: # video input=
embeddings = self.patch_embeddings(pixel_values.flatten(0, 1))
embeddings = rearrange(embeddings, '(b m) n d -> b (m n) d', m=pixel_values.shape[1])
else: # image input
embeddings = self.patch_embeddings(pixel_values)
batch_size, seq_len, _ = embeddings.size()
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
if bool_masked_pos is not None:
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
# replace the masked visual tokens by mask_tokens
w = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
embeddings = embeddings * (1 - w) + mask_tokens * w
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
if self.position_embeddings is not None:
embeddings = embeddings + self.position_embeddings
embeddings = self.dropout(embeddings)
return embeddings
# Based on timm implementation, which can be found here:
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
class PatchEmbeddings(nn.Module):
"""
Image to Patch Embedding.
"""
def __init__(self, image_size=224, patch_size=16, num_channels=3, embed_dim=768):
super().__init__()
image_size = to_2tuple(image_size)
patch_size = to_2tuple(patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
self.image_size = image_size
self.patch_size = patch_size
self.num_patches = num_patches
self.patch_shape = patch_shape
self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, pixel_values):
batch_size, num_channels, height, width = pixel_values.shape
# FIXME look at relaxing size constraints
if height != self.image_size[0] or width != self.image_size[1]:
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
)
x = self.projection(pixel_values).flatten(2).transpose(1, 2)
return x
class BeitSelfAttention(nn.Module):
def __init__(self, config, window_size=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
f"heads {config.num_attention_heads}."
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
# sparse params
self.random_attn = config.sparse_random_attn
self.local_attn = config.sparse_local_attn
self.block_size = config.attn_block_size
self.num_cls_tokens = config.num_cls_tokens
if self.local_attn is not None and self.random_attn is not None:
self.num_kv_blocks = self.local_attn + self.random_attn
if window_size:
self.relative_position_bias = BeitRelativePositionBias3D(config, window_size=window_size)
else:
self.relative_position_bias = None
def split_heads(self, x):
return rearrange(x, 'b n (h d) -> b h n d', h=self.num_attention_heads)
def join_heads(self, x):
return rearrange(x, 'b h n d -> b n (h d)')
def blockify(self, x):
assert x.dim() == 4, f"Unsupported input shape {x.shape}"
seq_len = x.shape[2]
if seq_len % self.block_size > 0: # seq_len not divisible by block_size, zero pad
pad_len = self.block_size - seq_len % self.block_size
x = nn.functional.pad(x, (0, 0, 0, pad_len))
else:
pad_len = 0
x = rearrange(x, 'b h (m n) d -> b h m n d', n=self.block_size)
return x, pad_len
def dense_attention(self, q, k, v, head_mask=None, relative_position_bias=None, q_idx=None, k_idx=None):
# q, k, v: (bsz, num_heads, seq_len, dims)
assert k.shape[2] == v.shape[2], "Key and value shapes mismatch"
sim = torch.einsum('b h i d, b h j d -> b h i j', q, k)
sim = sim / math.sqrt(self.attention_head_size)
# Add relative position bias if present.
if self.relative_position_bias is not None:
if q_idx is not None and q_idx.ndim == 2:
assert k_idx is not None and len(q_idx) == len(k_idx)
bias = torch.stack([
self.relative_position_bias(from_idx=q_idx_, to_idx=k_idx_)
for q_idx_, k_idx_ in zip(q_idx, k_idx)
])
else:
bias = self.relative_position_bias(from_idx=q_idx, to_idx=k_idx).unsqueeze(0)
sim = sim + bias
# Add shared relative position bias if provided.
if relative_position_bias is not None:
sim = sim + relative_position_bias
# Normalize the attention scores to probabilities.
attn = sim.softmax(dim=-1)
attn = self.dropout(attn)
if head_mask is not None:
attn = attn * head_mask
out = torch.einsum('b h i j, b h j d -> b h i d', attn, v)
return out, attn
def _sparse_attn_relative_position_bias(self, q_idx, pad_q, attn_idx, group_len):
q_idx_blk = nn.functional.pad(q_idx, (0, pad_q)).view(-1, self.block_size)
attn_idx_flt = rearrange(q_idx_blk[attn_idx], 'm n j -> m (n j)') # (seq_len, num_kv_blocks * group_len)
cls_idx = torch.arange(self.num_cls_tokens, device=q_idx.device)
cls_idx = repeat(cls_idx, 'n -> m n', m=len(attn_idx_flt))
attn_idx_flt = torch.cat((cls_idx, attn_idx_flt), dim=1)
attn_idx_flt = repeat(attn_idx_flt, 'm n -> (m i) n', i=group_len)
if pad_q > 0:
attn_idx_flt = attn_idx_flt[:-pad_q]
bias_flt = self.relative_position_bias(from_idx=q_idx, to_idx=attn_idx_flt)
if pad_q > 0:
bias_flt = nn.functional.pad(bias_flt, (0, 0, 0, pad_q))
return rearrange(bias_flt, 'h (m i) n -> h m i n', i=group_len) # num_heads, seq_len, group_len, (num_kv_blocks * group_len + num_cls_tokens)
def sparse_attention(self, q, k, v, head_mask=None, relative_position_bias=None, q_idx=None, mimic_full=False):
assert self.local_attn == 0 or self.local_attn % 2 == 1, "Even local window size not supported"
assert k.shape[2] == v.shape[2], "Key and value shapes mismatch"
if not mimic_full:
cls_k, k = k[..., :self.num_cls_tokens, :], k[..., self.num_cls_tokens:, :] # cls_k: (bsz, num_heads, num_cls_tokens, dims)
cls_v, v = v[..., :self.num_cls_tokens, :], v[..., self.num_cls_tokens:, :]
# pad token sequence to multiples of block_size
if mimic_full:
bsz, num_heads, seq_len, dims = q.shape
else:
q, pad_q = self.blockify(q) # q: (bsz, num_heads, seq_len, group_len, dims)
k, pad_k = self.blockify(k)
v, pad_v = self.blockify(v)
bsz, num_heads, seq_len, group_len, dims = q.shape
# global attention
cls_sim = torch.einsum('b h n i d, b h j d -> b h n i j', q, cls_k) # (bsz, num_heads, seq_len, group_len, num_cls_tokens)
if mimic_full:
sim = torch.einsum('b h i d, b h j d -> b h i j', q, k)
sim = sim / math.sqrt(self.attention_head_size)
sim = sim + self.relative_position_bias(from_idx=q_idx).unsqueeze(0)
else:
# initialize empty sim matrix
sim = torch.empty((bsz, num_heads, seq_len, self.num_kv_blocks, group_len, group_len), device=q.device)
attn_idx = torch.zeros((seq_len, self.num_kv_blocks), dtype=torch.int64, device=q.device)
# local window attention
cnt = 0
if self.local_attn > 0:
num_rolls = self.local_attn // 2
for r in range(-num_rolls, num_rolls + 1):
sim[..., cnt, :, :] = torch.einsum('b h n i d, b h n j d -> b h n i j', q, k.roll(-r, dims=2))
attn_idx[:, cnt] = torch.arange(seq_len, device=q.device).roll(r)
cnt += 1
# random attention
if self.random_attn > 0:
# generate random attention pattern
rand = torch.rand((seq_len, seq_len), device=q.device)
if self.local_attn > 0:
# avoid overlap with local attention
for r in range(-num_rolls, num_rolls + 1):
tgt_idx = list(i % seq_len for i in range(r, seq_len + r))
rand[range(seq_len), tgt_idx] = 0
_, idx = rand.topk(self.random_attn, dim=-1) # seq_len, random_attn
idx, _ = torch.sort(idx, dim=1)
attn_idx[:, cnt:] = idx
idx_ = repeat(idx, 'n m -> b h n m i d', b=bsz, h=num_heads, i=group_len, d=dims)
for r in range(self.random_attn):
sim[..., cnt, :, :] = torch.einsum('b h n i d, b h n j d -> b h n i j', q, k.gather(2, idx_[..., r, :, :]))
cnt += 1
sim = rearrange(sim, 'b h m n i j -> b h m i (n j)') # (bsz, num_heads, seq_len, group_len, num_kv_blocks * group_len)
sim = torch.cat((cls_sim, sim), -1)
sim = sim / math.sqrt(self.attention_head_size)
# Add relative position bias if present.
# NOTE: we assume q and k (excluding cls) use same token indexing, for relative position embedding
if self.relative_position_bias is not None:
assert q_idx is not None, "query index required for relative position bias"
if q_idx.ndim == 2:
# different indices for each sample
bias = torch.stack([
self._sparse_attn_relative_position_bias(q_idx_, pad_q, attn_idx, group_len)
for q_idx_ in q_idx
])
else:
bias = self._sparse_attn_relative_position_bias(q_idx, pad_q, attn_idx, group_len).unsqueeze(0)
sim = sim + bias
# Add shared relative position bias if provided.
if relative_position_bias is not None:
raise NotImplementedError
sim = sim + relative_position_bias
attn = sim.softmax(dim=-1)
attn = self.dropout(attn)
if head_mask is not None:
attn = attn * head_mask
# block attention
if mimic_full:
out = torch.einsum('b h i j, b h j d -> b h i d', attn, v)
else:
out = torch.empty((bsz, num_heads, seq_len, group_len, dims), device=q.device)
for m in range(seq_len):
v_row = torch.index_select(v, 2, attn_idx[m])
v_row = rearrange(v_row, 'b h n j d -> b h (n j) d') # (bsz, num_heads, num_kv_blocks * group_len, dims)
v_row = torch.cat((cls_v, v_row), 2)
out[..., m, :, :] = torch.einsum('b h i j, b h j d -> b h i d', attn[..., m, :, :], v_row)
out = rearrange(out, 'b h n i d -> b h (n i) d')
if pad_q > 0:
out = out[..., :-pad_q, :]
return out, attn
def forward(self, hidden_states, head_mask=None, output_attentions=False, relative_position_bias=None, token_idx=None):
# compute qkv
q = self.split_heads(self.query(hidden_states))
k = self.split_heads(self.key(hidden_states))
v = self.split_heads(self.value(hidden_states))
# combine local token_idx with cls tokens
# NOTE: assume token_idx starts from 0
cls_q_idx = torch.arange(self.num_cls_tokens, device=q.device)
if token_idx is not None:
if token_idx.ndim == 2:
cls_q_idx = repeat(cls_q_idx, 'n -> b n', b=q.shape[0])
all_token_idx = torch.cat((cls_q_idx, token_idx + self.num_cls_tokens), dim=-1)
else:
all_token_idx = None
if self.random_attn is None:
outputs, attention_probs = self.dense_attention(q, k, v, head_mask=head_mask,
relative_position_bias=relative_position_bias,
q_idx=all_token_idx,
k_idx=all_token_idx)
cls_attention_probs = attention_probs[..., :self.num_cls_tokens, :]
else:
cls_q, q = q[..., :self.num_cls_tokens, :], q[..., self.num_cls_tokens:, :]
# dense global attention (num_cls_tokens, seq_len)
cls_outputs, cls_attention_probs = self.dense_attention(cls_q, k, v, head_mask=head_mask,
relative_position_bias=relative_position_bias,
q_idx=cls_q_idx,
k_idx=all_token_idx)
# sparse local attention (local_seq_len, seq_len)
if token_idx is None:
token_idx = torch.arange(q.shape[-2], device=q.device)
outputs, attention_probs = self.sparse_attention(q, k, v, head_mask=head_mask,
relative_position_bias=relative_position_bias,
q_idx=token_idx + self.num_cls_tokens)
outputs = torch.cat((cls_outputs, outputs), dim=2)
outputs = self.join_heads(outputs)
outputs = (outputs, cls_attention_probs) if output_attentions else (outputs,)
return outputs
class BeitSelfOutput(nn.Module):
"""
The residual connection is defined in BeitLayer instead of here (as is the case with other models), due to the
layernorm applied before each block.
"""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor, gamma=None):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class BeitAttention(nn.Module):
def __init__(self, config, window_size=None):
super().__init__()
self.attention = BeitSelfAttention(config, window_size=window_size)
self.output = BeitSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.attention.query = prune_linear_layer(self.attention.query, index)
self.attention.key = prune_linear_layer(self.attention.key, index)
self.attention.value = prune_linear_layer(self.attention.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(self, hidden_states, head_mask=None, output_attentions=False, relative_position_bias=None, token_idx=None):
self_outputs = self.attention(hidden_states, head_mask, output_attentions, relative_position_bias, token_idx)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class BeitIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BeitOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class BeitLayer(nn.Module):
"""This corresponds to the Block class in the timm implementation."""
def __init__(self, config, window_size=None, drop_path_rate=0.0,
token_keep_rate=1.0):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = BeitAttention(config, window_size=window_size)
self.intermediate = BeitIntermediate(config)
self.output = BeitOutput(config)
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
# sparse params
self.token_keep_rate = token_keep_rate
self.token_keep_strategy = config.token_keep_strategy
self.num_cls_tokens = config.num_cls_tokens
init_values = config.layer_scale_init_value
if init_values > 0:
self.lambda_1 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True)
self.lambda_2 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True)
else:
self.lambda_1, self.lambda_2 = None, None
def sparsify(self, x, attn):
x_cls, x_ = x[:, :self.num_cls_tokens], x[:, self.num_cls_tokens:]
assert 0 < self.token_keep_rate <= 1, "Expected keep rate in range (0, 1]"
left_tokens = math.ceil(self.token_keep_rate * x_.size(1))
if self.token_keep_strategy == 'cls_attn':
if len(attn.shape) == 4:
attn = attn.mean(1) # pool over attention heads
cls_attn = attn[:, 0, self.num_cls_tokens:]
_, idx = torch.topk(cls_attn, left_tokens, dim=1) # [B, left_tokens]
elif self.token_keep_strategy == 'random':
rand = torch.rand(x_.shape[:2], device=x_.device)
_, idx = torch.topk(rand, left_tokens, dim=1) # [B, left_tokens]
else:
raise NotImplementedError(f"Sparse strategy {self.token_keep_strategy} is not implemented")
idx, _ = torch.sort(idx, dim=1)
index = idx.unsqueeze(-1).expand(-1, -1, x_.size(-1)) # [B, left_tokens, C]
outputs = torch.cat((x_cls, x_.gather(1, index)), dim=1).contiguous()
return outputs, idx
def forward(self, hidden_states, head_mask=None, output_attentions=False, relative_position_bias=None, token_idx=None):
self_attention_outputs = self.attention(
self.layernorm_before(hidden_states), # in BEiT, layernorm is applied before self-attention
head_mask,
output_attentions=(output_attentions or self.token_keep_rate < 1),
relative_position_bias=relative_position_bias,
token_idx=token_idx
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
# apply lambda_1 if present
if self.lambda_1 is not None:
attention_output = self.lambda_1 * attention_output
# first residual connection
hidden_states = self.drop_path(attention_output) + hidden_states
# in BEiT, layernorm is also applied after self-attention
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
layer_output = self.output(layer_output)
if self.lambda_2 is not None:
layer_output = self.lambda_2 * layer_output
# second residual connection
layer_output = self.drop_path(layer_output) + hidden_states
# node sparsification
if self.token_keep_rate < 1:
layer_output, token_keep_idx = self.sparsify(layer_output, outputs[0])
if token_idx is not None:
if token_idx.ndim == 1:
token_idx = repeat(token_idx, 'n -> b n', b=len(token_keep_idx))
token_keep_idx = token_idx.gather(1, token_keep_idx)
outputs = outputs + (token_keep_idx,)
outputs = (layer_output,) + outputs
return outputs
class BeitRelativePositionBias(nn.Module):
def __init__(self, config, window_size):
super().__init__()
self.window_size = window_size
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, config.num_attention_heads)
) # 2*Wh-1 * 2*Ww-1, nH
# cls to token & token 2 cls & cls to cls
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(window_size[0])
coords_w = torch.arange(window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = torch.zeros(
size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype
)
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer("relative_position_index", relative_position_index, persistent=False)
def forward(self):
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1
) # Wh*Ww,Wh*Ww,nH
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
class BeitRelativePositionBias3D(nn.Module):
"""
3D relative position bias
"""
def __init__(self, config, window_size, num_cls_tokens=1):
super().__init__()
self.window_size = window_size
self.num_cls_tokens = num_cls_tokens
relative_size = [w * 2 - 1 for w in window_size]
self.num_relative_distance = np.prod(relative_size) + 2 * num_cls_tokens + num_cls_tokens ** 2
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, config.num_attention_heads)
)
# get pair-wise relative position index for each token inside the window
coords_range = [torch.arange(w) for w in window_size]
coords_flatten = torch.stack(torch.meshgrid(coords_range)).flatten(1)
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
for i, w in enumerate(window_size):
relative_coords[:, :, i] += w - 1 # shift to start from 0
for i, r in enumerate(relative_size[1:]):
relative_coords[:, :, :i + 1] *= r
self.seq_len = np.prod(window_size) + num_cls_tokens
relative_position_index = torch.zeros((self.seq_len, self.seq_len), dtype=relative_coords.dtype)
relative_position_index[num_cls_tokens:, num_cls_tokens:] = relative_coords.sum(-1)
start = np.prod(relative_size)
cls2loc = torch.arange(num_cls_tokens).unsqueeze(1) + start
relative_position_index[:num_cls_tokens, num_cls_tokens:] = cls2loc
start += num_cls_tokens
loc2cls = torch.arange(num_cls_tokens).unsqueeze(0) + start
relative_position_index[num_cls_tokens:, :num_cls_tokens] = loc2cls
start += num_cls_tokens
cls2cls = torch.arange(num_cls_tokens ** 2).view(num_cls_tokens, num_cls_tokens) + start
relative_position_index[:num_cls_tokens, :num_cls_tokens] = cls2cls
self.register_buffer("relative_position_index", relative_position_index)
def forward(self, from_idx=None, to_idx=None):
"""
from_idx: indices of query tokens (1-dim)
to_idx: indices of key/value tokens (1-dim, or 2-dim w/ one row per query)
"""
attn_idx = self.relative_position_index
# query indices
if from_idx is not None:
attn_idx = attn_idx[from_idx]
# key indices
if to_idx is not None:
assert to_idx.ndim in (1, 2), "to_idx must be 1- or 2-dimensional tensors"
if to_idx.ndim == 1:
attn_idx = attn_idx[:, to_idx]
else:
attn_idx = attn_idx.gather(1, to_idx)
rows, cols = attn_idx.shape
relative_position_bias = self.relative_position_bias_table[attn_idx.flatten()]
relative_position_bias = rearrange(relative_position_bias, '(i j) h -> h i j', i=rows, j=cols)
return relative_position_bias.contiguous()
class BeitEncoder(nn.Module):
def __init__(self, config, window_size=None):
super().__init__()
self.config = config
if config.use_shared_relative_position_bias:
self.relative_position_bias = BeitRelativePositionBias3D(config, window_size=window_size)
else:
self.relative_position_bias = None
self._register_token_order(window_size)
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
# node sparsification
token_keep_rate = [1] * config.num_hidden_layers
for loc in config.token_drop_loc:
token_keep_rate[loc] = config.token_keep_rate
self.layer = nn.ModuleList(
[
BeitLayer(
config,
window_size=window_size if config.use_relative_position_bias else None,
drop_path_rate=dpr[i], token_keep_rate=token_keep_rate[i]
)
for i in range(config.num_hidden_layers)
]
)
self.gradient_checkpointing = False
def _register_token_order(self, shape):
if self.config.token_3d_order == 'none':
order = None
elif self.config.token_3d_order == 'zcurve':
nbits = max(shape).bit_length()
coords = list(np.ndindex(*shape))
order = zCurve.par_interlace(coords, len(shape), nbits)
order = torch.tensor(np.argsort(order))
elif self.config.token_3d_order == 'hilbert':
nbits = max(shape).bit_length()
coords = list(np.ndindex(*shape))
order = hilbert.encode(np.stack(coords), len(shape), nbits)
order = torch.tensor(np.argsort(order))
else:
raise NotImplementedError(f"Token ordering {self.config.token_3d_order} not supported")
if order is not None:
self.register_buffer('token_order', order, persistent=False)
else:
self.token_order = None
def forward(
self,
hidden_states,
head_mask=None,
output_attentions=False,
output_hidden_states=False,
output_token_idx=False,
return_dict=True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_token_idx = () if output_token_idx else None
token_idx = self.token_order
if token_idx is not None:
cls_states, local_states = hidden_states[:, :self.config.num_cls_tokens], hidden_states[:, self.config.num_cls_tokens:]
local_states = torch.index_select(local_states, dim=1, index=token_idx)
hidden_states = torch.cat((cls_states, local_states), 1)
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
hidden_states,
layer_head_mask,
)
else:
relative_position_bias = (
self.relative_position_bias() if self.relative_position_bias is not None else None
)
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions, relative_position_bias, token_idx)
hidden_states = layer_outputs[0]
if layer_module.token_keep_rate < 1:
token_idx = layer_outputs[-1]
if output_token_idx:
all_token_idx = all_token_idx + (token_idx,)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BeitModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
token_idx=all_token_idx
)
class BeitPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BeitConfig
base_model_prefix = "beit"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, BeitEncoder):
module.gradient_checkpointing = value
BEIT_START_DOCSTRING = r"""
This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ subclass. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config (:class:`~transformers.BeitConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
weights.
"""
BEIT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using :class:`~transformers.BeitFeatureExtractor`. See
:meth:`transformers.BeitFeatureExtractor.__call__` for details.
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
tensors for more detail.
output_hidden_states (:obj:`bool`, `optional`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
more detail.
return_dict (:obj:`bool`, `optional`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Beit Model transformer outputting raw hidden-states without any specific head on top.",
BEIT_START_DOCSTRING,
)
class BeitModel(BeitPreTrainedModel):
def __init__(self, config, add_pooling_layer=True, num_frames=None):
super().__init__(config)
self.config = config
self.embeddings = BeitEmbeddings(config)
self.window_size = self.embeddings.patch_embeddings.patch_shape
if num_frames is not None:
self.window_size = (num_frames,) + self.window_size
self.encoder = BeitEncoder(config, window_size=self.window_size)
self.layernorm = (
nn.Identity() if config.use_mean_pooling else nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
)
self.pooler = BeitPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BeitModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values=None,
bool_masked_pos=None,
head_mask=None,
output_attentions=None,
output_hidden_states=None,
output_token_idx=None,
return_dict=None,
):
r"""
Returns:
Examples::
>>> from transformers import BeitFeatureExtractor, BeitModel
>>> from PIL import Image
>>> import requests
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224-pt22k-ft22k')
>>> model = BeitModel.from_pretrained('microsoft/beit-base-patch16-224-pt22k-ft22k')
>>> inputs = feature_extractor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(pixel_values, bool_masked_pos)
encoder_outputs = self.encoder(
embedding_output,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_token_idx=output_token_idx,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BeitModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
token_idx=encoder_outputs.token_idx,
)
class BeitPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.layernorm = (
nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if config.use_mean_pooling else None
)
def forward(self, hidden_states):
if self.layernorm is not None:
# Mean pool the final hidden states of the patch tokens
patch_tokens = hidden_states[:, 1:, :]
pooled_output = self.layernorm(patch_tokens.mean(1))
else:
# Pool by simply taking the final hidden state of the [CLS] token
pooled_output = hidden_states[:, 0]
return pooled_output
@add_start_docstrings(
"Beit Model transformer with a 'language' modeling head on top (to predict visual tokens).",
BEIT_START_DOCSTRING,
)
class BeitForMaskedImageModeling(BeitPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.beit = BeitModel(config, add_pooling_layer=False)
# Classifier head
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values=None,
bool_masked_pos=None,
head_mask=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
bool_masked_pos (:obj:`torch.BoolTensor` of shape :obj:`(batch_size, num_patches)`):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for computing the image classification/regression loss. Indices should be in :obj:`[0, ...,
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples::
>>> from transformers import BeitFeatureExtractor, BeitForMaskedImageModeling
>>> from PIL import Image
>>> import requests
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224-pt22k')
>>> model = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k')
>>> inputs = feature_extractor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.beit(
pixel_values,
bool_masked_pos=bool_masked_pos,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.layernorm(sequence_output)
prediction_scores = self.lm_head(sequence_output[:, 1:])
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores[bool_masked_pos], labels)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Beit Model transformer with an image classification head on top (a linear layer on top of the average of the final
hidden states of the patch tokens) e.g. for ImageNet.
""",
BEIT_START_DOCSTRING,
)
class BeitForImageClassification(BeitPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.beit = BeitModel(config, add_pooling_layer=True)
# Classifier head
self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values=None,
head_mask=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for computing the image classification/regression loss. Indices should be in :obj:`[0, ...,
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples::
>>> from transformers import BeitFeatureExtractor, BeitForImageClassification
>>> from PIL import Image
>>> import requests
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224')
>>> model = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224')
>>> inputs = feature_extractor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = logits.argmax(-1).item()
>>> print("Predicted class:", model.config.id2label[predicted_class_idx])
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.beit(
pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.num_labels == 1:
# We are doing regression
loss_fct = MSELoss()
loss = loss_fct(logits.view(-1), labels.view(-1))
else:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class BeitConvModule(nn.Module):
"""
A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution
layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU).
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
"""
def __init__(self, in_channels, out_channels, kernel_size, padding=0, bias=False, dilation=1):
super().__init__()
self.conv = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
padding=padding,
bias=bias,
dilation=dilation,
)
self.bn = nn.BatchNorm2d(out_channels)
self.activation = nn.ReLU()
def forward(self, input):
output = self.conv(input)
output = self.bn(output)
output = self.activation(output)
return output
class BeitPyramidPoolingModule(nn.ModuleList):
"""
Pyramid Pooling Module (PPM) used in PSPNet.
Args:
pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
Module.
in_channels (int): Input channels.
channels (int): Channels after modules, before conv_seg.
align_corners (bool): align_corners argument of F.interpolate.
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
"""
def __init__(self, pool_scales, in_channels, channels, align_corners):
super().__init__()
self.pool_scales = pool_scales
self.align_corners = align_corners
self.in_channels = in_channels
self.channels = channels
for pool_scale in pool_scales:
self.append(
nn.Sequential(
nn.AdaptiveAvgPool2d(pool_scale),
BeitConvModule(self.in_channels, self.channels, kernel_size=1),
)
)
def forward(self, x):
ppm_outs = []
for ppm in self:
ppm_out = ppm(x)
upsampled_ppm_out = nn.functional.interpolate(
ppm_out, size=x.size()[2:], mode="bilinear", align_corners=self.align_corners
)
ppm_outs.append(upsampled_ppm_out)
return ppm_outs
class BeitUperHead(nn.Module):
"""
Unified Perceptual Parsing for Scene Understanding. This head is the implementation of `UPerNet
<https://arxiv.org/abs/1807.10221>`_.
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
"""
def __init__(self, config):
super().__init__()
self.pool_scales = config.pool_scales # e.g. (1, 2, 3, 6)
self.in_channels = [config.hidden_size] * 4 # e.g. [768, 768, 768, 768]
self.channels = config.hidden_size
self.align_corners = False
self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1)
# PSP Module
self.psp_modules = BeitPyramidPoolingModule(
self.pool_scales,
self.in_channels[-1],
self.channels,
align_corners=self.align_corners,
)
self.bottleneck = BeitConvModule(
self.in_channels[-1] + len(self.pool_scales) * self.channels,
self.channels,
kernel_size=3,
padding=1,
)
# FPN Module
self.lateral_convs = nn.ModuleList()
self.fpn_convs = nn.ModuleList()
for in_channels in self.in_channels[:-1]: # skip the top layer
l_conv = BeitConvModule(in_channels, self.channels, kernel_size=1)
fpn_conv = BeitConvModule(self.channels, self.channels, kernel_size=3, padding=1)
self.lateral_convs.append(l_conv)
self.fpn_convs.append(fpn_conv)
self.fpn_bottleneck = BeitConvModule(
len(self.in_channels) * self.channels,
self.channels,
kernel_size=3,
padding=1,
)
def psp_forward(self, inputs):
x = inputs[-1]
psp_outs = [x]
psp_outs.extend(self.psp_modules(x))
psp_outs = torch.cat(psp_outs, dim=1)
output = self.bottleneck(psp_outs)
return output
def forward(self, encoder_hidden_states):
# build laterals
laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)]
laterals.append(self.psp_forward(encoder_hidden_states))
# build top-down path
used_backbone_levels = len(laterals)
for i in range(used_backbone_levels - 1, 0, -1):
prev_shape = laterals[i - 1].shape[2:]
laterals[i - 1] = laterals[i - 1] + nn.functional.interpolate(
laterals[i], size=prev_shape, mode="bilinear", align_corners=self.align_corners
)
# build outputs
fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)]
# append psp feature
fpn_outs.append(laterals[-1])
for i in range(used_backbone_levels - 1, 0, -1):
fpn_outs[i] = nn.functional.interpolate(
fpn_outs[i], size=fpn_outs[0].shape[2:], mode="bilinear", align_corners=self.align_corners
)
fpn_outs = torch.cat(fpn_outs, dim=1)
output = self.fpn_bottleneck(fpn_outs)
output = self.classifier(output)
return output
class BeitFCNHead(nn.Module):
"""
Fully Convolution Networks for Semantic Segmentation. This head is implemented of `FCNNet
<https://arxiv.org/abs/1411.4038>`_.
Args:
config (BeitConfig): Configuration.
in_channels
kernel_size (int): The kernel size for convs in the head. Default: 3.
dilation (int): The dilation rate for convs in the head. Default: 1.
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
"""
def __init__(self, config, in_index=2, kernel_size=3, dilation=1):
super().__init__()
self.in_channels = config.hidden_size
self.channels = config.auxiliary_channels
self.num_convs = config.auxiliary_num_convs
self.concat_input = config.auxiliary_concat_input
self.in_index = in_index
conv_padding = (kernel_size // 2) * dilation
convs = []
convs.append(
BeitConvModule(
self.in_channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation
)
)
for i in range(self.num_convs - 1):
convs.append(
BeitConvModule(
self.channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation
)
)
if self.num_convs == 0:
self.convs = nn.Identity()
else:
self.convs = nn.Sequential(*convs)
if self.concat_input:
self.conv_cat = BeitConvModule(
self.in_channels + self.channels, self.channels, kernel_size=kernel_size, padding=kernel_size // 2
)
self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1)
def forward(self, encoder_hidden_states):
# just take the relevant feature maps
hidden_states = encoder_hidden_states[self.in_index]
output = self.convs(hidden_states)
if self.concat_input:
output = self.conv_cat(torch.cat([hidden_states, output], dim=1))
output = self.classifier(output)
return output
@add_start_docstrings(
"""
Beit Model transformer with a semantic segmentation head on top e.g. for ADE20k, CityScapes.
""",
BEIT_START_DOCSTRING,
)
class BeitForSemanticSegmentation(BeitPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.beit = BeitModel(config, add_pooling_layer=False)
# FPNs
self.fpn1 = nn.Sequential(
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
nn.BatchNorm2d(config.hidden_size),
nn.GELU(),
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
)
self.fpn2 = nn.Sequential(
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
)
self.fpn3 = nn.Identity()
self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2)
# Semantic segmentation head(s)
self.decode_head = BeitUperHead(config)
self.auxiliary_head = BeitFCNHead(config) if config.use_auxiliary_head else None
# Initialize weights and apply final processing
self.post_init()
def compute_loss(self, logits, auxiliary_logits, labels):
# upsample logits to the images' original size
upsampled_logits = nn.functional.interpolate(
logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
)
if auxiliary_logits is not None:
upsampled_auxiliary_logits = nn.functional.interpolate(
auxiliary_logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
)
# compute weighted loss
loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index)
main_loss = loss_fct(upsampled_logits, labels)
auxiliary_loss = loss_fct(upsampled_auxiliary_logits, labels)
loss = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss
return loss
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values=None,
head_mask=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, height, width)`, `optional`):
Ground truth semantic segmentation maps for computing the loss. Indices should be in :obj:`[0, ...,
config.num_labels - 1]`. If :obj:`config.num_labels > 1`, a classification loss is computed
(Cross-Entropy).
Returns:
Examples::
>>> from transformers import BeitFeatureExtractor, BeitForSemanticSegmentation
>>> from PIL import Image
>>> import requests
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-finetuned-ade-640-640')
>>> model = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640')
>>> inputs = feature_extractor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> # logits are of shape (batch_size, num_labels, height/4, width/4)
>>> logits = outputs.logits
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
outputs = self.beit(
pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=True, # we need the intermediate hidden states
return_dict=return_dict,
)
encoder_hidden_states = outputs.hidden_states if return_dict else outputs[2]
# only keep certain features, and reshape
# note that we do +1 as the encoder_hidden_states also includes the initial embeddings
features = [feature for idx, feature in enumerate(encoder_hidden_states) if idx + 1 in self.config.out_indices]
batch_size = pixel_values.shape[0]
patch_resolution = self.config.image_size // self.config.patch_size
features = [
x[:, 1:, :].permute(0, 2, 1).reshape(batch_size, -1, patch_resolution, patch_resolution) for x in features
]
# apply FPNs
ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4]
for i in range(len(features)):
features[i] = ops[i](features[i])
logits = self.decode_head(features)
auxiliary_logits = None
if self.auxiliary_head is not None:
auxiliary_logits = self.auxiliary_head(features)
loss = None
if labels is not None:
if self.config.num_labels == 1:
raise ValueError("The number of labels should be greater than one")
else:
loss = self.compute_loss(logits, auxiliary_logits, labels)
if not return_dict:
if output_hidden_states:
output = (logits,) + outputs[2:]
else:
output = (logits,) + outputs[3:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions,
)