Spaces:
Runtime error
Runtime error
first commit
Browse files- app.py +86 -0
- ckpt/svitt-ego.pth +3 -0
- configs/base.yml +21 -0
- configs/config_bert.json +21 -0
- configs/ego_mcq/multiple-choice-question.yaml +37 -0
- configs/ego_mcq/svitt.yml +9 -0
- data/svitt-ego-demo/0/meta.json +1 -0
- data/svitt-ego-demo/0/tensors.pt +3 -0
- data/svitt-ego-demo/0/video/014b473f-aec0-49c7-b394-abc7309ca3c7-converted.mp4 +0 -0
- data/svitt-ego-demo/0/video/0a3097fc-baed-4d11-a4c9-30f07eb91af6-converted.mp4 +0 -0
- data/svitt-ego-demo/0/video/1a870d5d-5787-4098-ad8d-fe7343c43698-converted.mp4 +0 -0
- data/svitt-ego-demo/0/video/2d560d56-dc47-4c76-8d41-889c8aa55d66-converted.mp4 +0 -0
- data/svitt-ego-demo/0/video/eb5cb2b0-59e6-45da-af1b-ba86c7ab0b54-converted.mp4 +0 -0
- data/svitt-ego-demo/1/meta.json +1 -0
- data/svitt-ego-demo/1/tensors.pt +3 -0
- data/svitt-ego-demo/1/video/029eeb9a-8853-48a4-a1dc-e8868b58adf3-converted.mp4 +0 -0
- data/svitt-ego-demo/1/video/060e07d8-e818-4f9c-9d6b-6504f5fd42a3-converted.mp4 +0 -0
- data/svitt-ego-demo/1/video/53da674a-089d-428a-a719-e322b2de002b-converted.mp4 +0 -0
- data/svitt-ego-demo/1/video/968139e2-987e-4615-a2d4-fa2e683bae8a-converted.mp4 +0 -0
- data/svitt-ego-demo/1/video/fb9fda68-f264-465d-9208-19876f5ef90f-converted.mp4 +0 -0
- data/svitt-ego-demo/2/meta.json +1 -0
- data/svitt-ego-demo/2/tensors.pt +3 -0
- data/svitt-ego-demo/2/video/5f6f87ea-e1c3-4868-bb60-22c9e874d056-converted.mp4 +0 -0
- data/svitt-ego-demo/2/video/77718528-2de9-48b4-b6b8-e7c602032afb-converted.mp4 +0 -0
- data/svitt-ego-demo/2/video/8d83478f-c5d2-4ac3-a823-e1b2ac7594d7-converted.mp4 +0 -0
- data/svitt-ego-demo/2/video/9abbf7f4-68f0-4f52-812f-df2a3df48f7b-converted.mp4 +0 -0
- data/svitt-ego-demo/2/video/fa2f1291-3796-41a6-8f7b-6e7c1491b9b2-converted.mp4 +0 -0
- data/svitt-ego-demo/3/meta.json +1 -0
- data/svitt-ego-demo/3/tensors.pt +3 -0
- data/svitt-ego-demo/3/video/2a6b3d10-8da9-4f0e-a681-59ba48a55dbf-converted.mp4 +0 -0
- data/svitt-ego-demo/3/video/5afd7421-fb6b-4c65-a09a-716f79a7a935-converted.mp4 +0 -0
- data/svitt-ego-demo/3/video/81fff27c-97c0-483a-ad42-47fa947977a9-converted.mp4 +0 -0
- data/svitt-ego-demo/3/video/84d6855a-242b-44a6-b48d-2db302b5ea7a-converted.mp4 +0 -0
- data/svitt-ego-demo/3/video/f7aec252-bd4f-4696-8de5-ef7b871e2194-converted.mp4 +0 -0
- demo.py +165 -0
- requirements.txt +14 -0
- svitt/base_dataset.py +56 -0
- svitt/config.py +36 -0
- svitt/model.py +340 -0
- svitt/sparse_config.py +351 -0
- svitt/sparse_xbeit.py +1585 -0
- svitt/sparse_xbert.py +2039 -0
- svitt/tokenization_bert.py +546 -0
- svitt/utils.py +235 -0
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from demo import VideoCLSModel
|
4 |
+
|
5 |
+
|
6 |
+
sample_videos = [
|
7 |
+
[
|
8 |
+
"data/svitt-ego-demo/0/video/2d560d56-dc47-4c76-8d41-889c8aa55d66-converted.mp4",
|
9 |
+
"data/svitt-ego-demo/0/video/eb5cb2b0-59e6-45da-af1b-ba86c7ab0b54-converted.mp4",
|
10 |
+
"data/svitt-ego-demo/0/video/0a3097fc-baed-4d11-a4c9-30f07eb91af6-converted.mp4",
|
11 |
+
"data/svitt-ego-demo/0/video/1a870d5d-5787-4098-ad8d-fe7343c43698-converted.mp4",
|
12 |
+
"data/svitt-ego-demo/0/video/014b473f-aec0-49c7-b394-abc7309ca3c7-converted.mp4",
|
13 |
+
],
|
14 |
+
[
|
15 |
+
"data/svitt-ego-demo/1/video/029eeb9a-8853-48a4-a1dc-e8868b58adf3-converted.mp4",
|
16 |
+
"data/svitt-ego-demo/1/video/968139e2-987e-4615-a2d4-fa2e683bae8a-converted.mp4",
|
17 |
+
"data/svitt-ego-demo/1/video/fb9fda68-f264-465d-9208-19876f5ef90f-converted.mp4",
|
18 |
+
"data/svitt-ego-demo/1/video/53da674a-089d-428a-a719-e322b2de002b-converted.mp4",
|
19 |
+
"data/svitt-ego-demo/1/video/060e07d8-e818-4f9c-9d6b-6504f5fd42a3-converted.mp4",
|
20 |
+
],
|
21 |
+
[
|
22 |
+
"data/svitt-ego-demo/2/video/fa2f1291-3796-41a6-8f7b-6e7c1491b9b2-converted.mp4",
|
23 |
+
"data/svitt-ego-demo/2/video/8d83478f-c5d2-4ac3-a823-e1b2ac7594d7-converted.mp4",
|
24 |
+
"data/svitt-ego-demo/2/video/5f6f87ea-e1c3-4868-bb60-22c9e874d056-converted.mp4",
|
25 |
+
"data/svitt-ego-demo/2/video/77718528-2de9-48b4-b6b8-e7c602032afb-converted.mp4",
|
26 |
+
"data/svitt-ego-demo/2/video/9abbf7f4-68f0-4f52-812f-df2a3df48f7b-converted.mp4",
|
27 |
+
],
|
28 |
+
[
|
29 |
+
"data/svitt-ego-demo/3/video/2a6b3d10-8da9-4f0e-a681-59ba48a55dbf-converted.mp4",
|
30 |
+
"data/svitt-ego-demo/3/video/5afd7421-fb6b-4c65-a09a-716f79a7a935-converted.mp4",
|
31 |
+
"data/svitt-ego-demo/3/video/f7aec252-bd4f-4696-8de5-ef7b871e2194-converted.mp4",
|
32 |
+
"data/svitt-ego-demo/3/video/84d6855a-242b-44a6-b48d-2db302b5ea7a-converted.mp4",
|
33 |
+
"data/svitt-ego-demo/3/video/81fff27c-97c0-483a-ad42-47fa947977a9-converted.mp4",
|
34 |
+
],
|
35 |
+
]
|
36 |
+
sample_text = [
|
37 |
+
"drops the palm fronds on the ground",
|
38 |
+
"stands up",
|
39 |
+
"throws nuts in a bowl",
|
40 |
+
"puts the speaker and notepad in both hands on a seat",
|
41 |
+
]
|
42 |
+
sample_text_dict = {
|
43 |
+
"drops the palm fronds on the ground": 0,
|
44 |
+
"stands up": 1,
|
45 |
+
"throws nuts in a bowl": 2,
|
46 |
+
"puts the speaker and notepad in both hands on a seat": 3,
|
47 |
+
}
|
48 |
+
num_samples = len(sample_videos[0])
|
49 |
+
labels = [f"video-{i}" for i in range(num_samples)]
|
50 |
+
|
51 |
+
def main():
|
52 |
+
svitt = VideoCLSModel(
|
53 |
+
"configs/ego_mcq/svitt.yml",
|
54 |
+
sample_videos,
|
55 |
+
)
|
56 |
+
def predict(text):
|
57 |
+
idx = sample_text_dict[text]
|
58 |
+
ft_action, gt_action = svitt.predict(idx, text)
|
59 |
+
return labels[gt_action], labels[ft_action]
|
60 |
+
|
61 |
+
with gr.Blocks() as demo:
|
62 |
+
gr.Markdown(
|
63 |
+
"""
|
64 |
+
# SViTT-Ego for Multiple Choice Question
|
65 |
+
Choose a sample query and click predict to view the results.
|
66 |
+
"""
|
67 |
+
)
|
68 |
+
with gr.Row():
|
69 |
+
with gr.Column():
|
70 |
+
videos = [gr.Video(label=labels[i], format='mp4', height=256, min_width=340) for i in range(num_samples)]
|
71 |
+
with gr.Column():
|
72 |
+
text = gr.Text(label="Query", visible=False)
|
73 |
+
label = gr.Text(label="Ground Truth")
|
74 |
+
ours = gr.Text(label="SViTT-Ego prediction")
|
75 |
+
btn = gr.Button("Predict", variant="primary")
|
76 |
+
btn.click(predict, inputs=[text], outputs=[label, ours])
|
77 |
+
inputs = [text]
|
78 |
+
inputs.extend(videos)
|
79 |
+
gr.Examples(examples=[[sample_text[i], x[0], x[1], x[2], x[3], x[4]] for i, x in enumerate(sample_videos)], inputs=inputs)
|
80 |
+
|
81 |
+
demo.launch(share=True)
|
82 |
+
|
83 |
+
|
84 |
+
if __name__ == "__main__":
|
85 |
+
main()
|
86 |
+
|
ckpt/svitt-ego.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d66ad807fb618b1e99da476d54238555eb51925afa65e444ba43dc5c235db1e
|
3 |
+
size 2500535422
|
configs/base.yml
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
pretrain: ""
|
3 |
+
resume: ""
|
4 |
+
timesformer_freeze_space: false
|
5 |
+
drop_path_rate: 0.1
|
6 |
+
dropout_ratio: 0.5
|
7 |
+
freeze_vis_backbone: false
|
8 |
+
freeze_txt_backbone: false
|
9 |
+
use_vn_classifier: false
|
10 |
+
|
11 |
+
data:
|
12 |
+
dataset: ek100_mir
|
13 |
+
root: datasets/EK100/video_ht256px
|
14 |
+
metadata: datasets/EK100/epic-kitchens-100-annotations/retrieval_annotations/EPIC_100_retrieval_train.csv
|
15 |
+
metadata_val: datasets/EK100/epic-kitchens-100-annotations/retrieval_annotations/EPIC_100_retrieval_test.csv
|
16 |
+
relevancy_path: datasets/EK100/epic-kitchens-100-annotations/retrieval_annotations/relevancy/caption_relevancy_EPIC_100_retrieval_test.pkl
|
17 |
+
clip_length: 16
|
18 |
+
clip_stride: 4
|
19 |
+
sparse_sample: false
|
20 |
+
num_crops: 1
|
21 |
+
num_clips: 1
|
configs/config_bert.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"hidden_act": "gelu",
|
7 |
+
"hidden_dropout_prob": 0.1,
|
8 |
+
"hidden_size": 768,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"intermediate_size": 3072,
|
11 |
+
"layer_norm_eps": 1e-12,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"model_type": "bert",
|
14 |
+
"num_attention_heads": 12,
|
15 |
+
"num_hidden_layers": 12,
|
16 |
+
"pad_token_id": 0,
|
17 |
+
"type_vocab_size": 2,
|
18 |
+
"vocab_size": 30522,
|
19 |
+
"fusion_layer": 9,
|
20 |
+
"encoder_width": 768
|
21 |
+
}
|
configs/ego_mcq/multiple-choice-question.yaml
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
text_encoder: bert-base-uncased
|
3 |
+
bert_config: configs/config_bert.json
|
4 |
+
vit_type: beit # items in ${vit_zoo}
|
5 |
+
vit_zoo: # from huggingface
|
6 |
+
beit: microsoft/beit-base-patch16-224-pt22k-ft22k
|
7 |
+
vit_name_or_pretrained_path: ${vit_zoo[${vit_type}]}
|
8 |
+
|
9 |
+
vision_encoder_args:
|
10 |
+
token_keep_rate: 0.7
|
11 |
+
token_keep_strategy: cls_attn
|
12 |
+
token_drop_loc: [3, 6, 9]
|
13 |
+
sparse_local_attn: 1
|
14 |
+
sparse_random_attn: 5
|
15 |
+
attn_block_size: 56
|
16 |
+
|
17 |
+
image_res: 224
|
18 |
+
embed_dim: 256
|
19 |
+
video_input:
|
20 |
+
num_frames: 4
|
21 |
+
reader: decord # one of [decord, av]
|
22 |
+
sample_type: rand
|
23 |
+
num_frames_test: 16 # num_frames during inference/test
|
24 |
+
sample_type_test: middle
|
25 |
+
max_txt_l:
|
26 |
+
image: 32
|
27 |
+
video: 32
|
28 |
+
|
29 |
+
batch_size:
|
30 |
+
image: 8
|
31 |
+
video: 8
|
32 |
+
batch_size_test:
|
33 |
+
image: 8
|
34 |
+
video: 8
|
35 |
+
k_test: 128
|
36 |
+
temp: 0.18
|
37 |
+
mlm_prob: 0.5
|
configs/ego_mcq/svitt.yml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
pretrain: ckpt/svitt-ego.pth
|
3 |
+
freeze_vis_backbone: true
|
4 |
+
freeze_txt_backbone: true
|
5 |
+
num_frames: 4
|
6 |
+
config: configs/ego_mcq/multiple-choice-question.yaml
|
7 |
+
|
8 |
+
data:
|
9 |
+
root: data/svitt-ego-demo
|
data/svitt-ego-demo/0/meta.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"text": "#C C drops the palm fronds on the ground", "text_ops": ["#C C picks a bowl with fruit from person O", "#C C turns to the woman X on his right", "#C C picks the pocket knife ", "#C C removes the paint from the wall.", "#C C drops the palm fronds on the ground"], "correct": 4, "type": 1, "meta": {"raw_captions": "#C C drops the palm fronds on the ground", "paths": [["/datasets/ego4d/egovlp/full_scale_256_chunked/2d560d56-dc47-4c76-8d41-889c8aa55d66/4.mp4", "/datasets/ego4d/egovlp/full_scale_256_chunked/2d560d56-dc47-4c76-8d41-889c8aa55d66/4.mp4"], ["/datasets/ego4d/egovlp/full_scale_256_chunked/eb5cb2b0-59e6-45da-af1b-ba86c7ab0b54/0.mp4", "/datasets/ego4d/egovlp/full_scale_256_chunked/eb5cb2b0-59e6-45da-af1b-ba86c7ab0b54/0.mp4"], ["/datasets/ego4d/egovlp/full_scale_256_chunked/0a3097fc-baed-4d11-a4c9-30f07eb91af6/0.mp4", "/datasets/ego4d/egovlp/full_scale_256_chunked/0a3097fc-baed-4d11-a4c9-30f07eb91af6/0.mp4"], ["/datasets/ego4d/egovlp/full_scale_256_chunked/1a870d5d-5787-4098-ad8d-fe7343c43698/0.mp4", "/datasets/ego4d/egovlp/full_scale_256_chunked/1a870d5d-5787-4098-ad8d-fe7343c43698/0.mp4"], ["/datasets/ego4d/egovlp/full_scale_256_chunked/014b473f-aec0-49c7-b394-abc7309ca3c7/0.mp4", "/datasets/ego4d/egovlp/full_scale_256_chunked/014b473f-aec0-49c7-b394-abc7309ca3c7/0.mp4"]]}}
|
data/svitt-ego-demo/0/tensors.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a572098fa6fb25b4a465dc138a3341f6b22cfc525f7e772b53bc17bd171e56d
|
3 |
+
size 12042987
|
data/svitt-ego-demo/0/video/014b473f-aec0-49c7-b394-abc7309ca3c7-converted.mp4
ADDED
Binary file (300 kB). View file
|
|
data/svitt-ego-demo/0/video/0a3097fc-baed-4d11-a4c9-30f07eb91af6-converted.mp4
ADDED
Binary file (42.5 kB). View file
|
|
data/svitt-ego-demo/0/video/1a870d5d-5787-4098-ad8d-fe7343c43698-converted.mp4
ADDED
Binary file (39.1 kB). View file
|
|
data/svitt-ego-demo/0/video/2d560d56-dc47-4c76-8d41-889c8aa55d66-converted.mp4
ADDED
Binary file (164 kB). View file
|
|
data/svitt-ego-demo/0/video/eb5cb2b0-59e6-45da-af1b-ba86c7ab0b54-converted.mp4
ADDED
Binary file (96.8 kB). View file
|
|
data/svitt-ego-demo/1/meta.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"text": "#C C stands up", "text_ops": ["#C C walks a round", "#C C stands up", "#O person Y pushes the door ", "#C C picks pastry cloth", "#C C holds the wire"], "correct": 1, "type": 1, "meta": {"raw_captions": "#C C holds the wire", "paths": [["/datasets/ego4d/egovlp/full_scale_256_chunked/029eeb9a-8853-48a4-a1dc-e8868b58adf3/0.mp4", "/datasets/ego4d/egovlp/full_scale_256_chunked/029eeb9a-8853-48a4-a1dc-e8868b58adf3/0.mp4"], ["/datasets/ego4d/egovlp/full_scale_256_chunked/968139e2-987e-4615-a2d4-fa2e683bae8a/4.mp4", "/datasets/ego4d/egovlp/full_scale_256_chunked/968139e2-987e-4615-a2d4-fa2e683bae8a/4.mp4"], ["/datasets/ego4d/egovlp/full_scale_256_chunked/fb9fda68-f264-465d-9208-19876f5ef90f/0.mp4", "/datasets/ego4d/egovlp/full_scale_256_chunked/fb9fda68-f264-465d-9208-19876f5ef90f/0.mp4"], ["/datasets/ego4d/egovlp/full_scale_256_chunked/53da674a-089d-428a-a719-e322b2de002b/1.mp4", "/datasets/ego4d/egovlp/full_scale_256_chunked/53da674a-089d-428a-a719-e322b2de002b/1.mp4"], ["/datasets/ego4d/egovlp/full_scale_256_chunked/060e07d8-e818-4f9c-9d6b-6504f5fd42a3/0.mp4", "/datasets/ego4d/egovlp/full_scale_256_chunked/060e07d8-e818-4f9c-9d6b-6504f5fd42a3/0.mp4"]]}}
|
data/svitt-ego-demo/1/tensors.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:053afd65ae1250bfc609d34c561c51fdde4812251b233f2f246f68b66da84533
|
3 |
+
size 12042987
|
data/svitt-ego-demo/1/video/029eeb9a-8853-48a4-a1dc-e8868b58adf3-converted.mp4
ADDED
Binary file (60.1 kB). View file
|
|
data/svitt-ego-demo/1/video/060e07d8-e818-4f9c-9d6b-6504f5fd42a3-converted.mp4
ADDED
Binary file (42.8 kB). View file
|
|
data/svitt-ego-demo/1/video/53da674a-089d-428a-a719-e322b2de002b-converted.mp4
ADDED
Binary file (29.3 kB). View file
|
|
data/svitt-ego-demo/1/video/968139e2-987e-4615-a2d4-fa2e683bae8a-converted.mp4
ADDED
Binary file (39.6 kB). View file
|
|
data/svitt-ego-demo/1/video/fb9fda68-f264-465d-9208-19876f5ef90f-converted.mp4
ADDED
Binary file (161 kB). View file
|
|
data/svitt-ego-demo/2/meta.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"text": "#C C throws nuts in a bowl.", "text_ops": ["#C C throws nuts in a bowl.", "#O The woman Z places her right hand on the table.", "#O The woman T touches a card on the table with her left hand.", "#C C joins the pieces of dough together on the tray.", "#O A woman X walks forward"], "correct": 0, "type": 1, "meta": {"raw_captions": "#O A woman X walks forward", "paths": [["/datasets/ego4d/egovlp/full_scale_256_chunked/fa2f1291-3796-41a6-8f7b-6e7c1491b9b2/0.mp4", "/datasets/ego4d/egovlp/full_scale_256_chunked/fa2f1291-3796-41a6-8f7b-6e7c1491b9b2/0.mp4"], ["/datasets/ego4d/egovlp/full_scale_256_chunked/8d83478f-c5d2-4ac3-a823-e1b2ac7594d7/1.mp4", "/datasets/ego4d/egovlp/full_scale_256_chunked/8d83478f-c5d2-4ac3-a823-e1b2ac7594d7/1.mp4"], ["/datasets/ego4d/egovlp/full_scale_256_chunked/5f6f87ea-e1c3-4868-bb60-22c9e874d056/0.mp4", "/datasets/ego4d/egovlp/full_scale_256_chunked/5f6f87ea-e1c3-4868-bb60-22c9e874d056/0.mp4"], ["/datasets/ego4d/egovlp/full_scale_256_chunked/77718528-2de9-48b4-b6b8-e7c602032afb/4.mp4", "/datasets/ego4d/egovlp/full_scale_256_chunked/77718528-2de9-48b4-b6b8-e7c602032afb/4.mp4"], ["/datasets/ego4d/egovlp/full_scale_256_chunked/9abbf7f4-68f0-4f52-812f-df2a3df48f7b/1.mp4", "/datasets/ego4d/egovlp/full_scale_256_chunked/9abbf7f4-68f0-4f52-812f-df2a3df48f7b/1.mp4"]]}}
|
data/svitt-ego-demo/2/tensors.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:381ef1a03e5685229295a3a6a327ef39b0489b0da5fe9ba3754c6101f6c39ec6
|
3 |
+
size 12042987
|
data/svitt-ego-demo/2/video/5f6f87ea-e1c3-4868-bb60-22c9e874d056-converted.mp4
ADDED
Binary file (20.6 kB). View file
|
|
data/svitt-ego-demo/2/video/77718528-2de9-48b4-b6b8-e7c602032afb-converted.mp4
ADDED
Binary file (27.2 kB). View file
|
|
data/svitt-ego-demo/2/video/8d83478f-c5d2-4ac3-a823-e1b2ac7594d7-converted.mp4
ADDED
Binary file (47.6 kB). View file
|
|
data/svitt-ego-demo/2/video/9abbf7f4-68f0-4f52-812f-df2a3df48f7b-converted.mp4
ADDED
Binary file (52.7 kB). View file
|
|
data/svitt-ego-demo/2/video/fa2f1291-3796-41a6-8f7b-6e7c1491b9b2-converted.mp4
ADDED
Binary file (26.1 kB). View file
|
|
data/svitt-ego-demo/3/meta.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"text": "#C C puts the speaker and notepad in both hands on a seat.", "text_ops": ["#C C picks a chaff from the pan of ingredients", "#C C switches his left hand grip on the broom", "#C C cuts the dough on the tray with the scraper in his right hand.", "#C C pulls the wire mesh.", "#C C puts the speaker and notepad in both hands on a seat."], "correct": 4, "type": 1, "meta": {"raw_captions": "#C C puts the speaker and notepad in both hands on a seat.", "paths": [["/datasets/ego4d/egovlp/full_scale_256_chunked/2a6b3d10-8da9-4f0e-a681-59ba48a55dbf/2.mp4", "/datasets/ego4d/egovlp/full_scale_256_chunked/2a6b3d10-8da9-4f0e-a681-59ba48a55dbf/2.mp4"], ["/datasets/ego4d/egovlp/full_scale_256_chunked/5afd7421-fb6b-4c65-a09a-716f79a7a935/1.mp4", "/datasets/ego4d/egovlp/full_scale_256_chunked/5afd7421-fb6b-4c65-a09a-716f79a7a935/1.mp4"], ["/datasets/ego4d/egovlp/full_scale_256_chunked/f7aec252-bd4f-4696-8de5-ef7b871e2194/1.mp4", "/datasets/ego4d/egovlp/full_scale_256_chunked/f7aec252-bd4f-4696-8de5-ef7b871e2194/1.mp4"], ["/datasets/ego4d/egovlp/full_scale_256_chunked/84d6855a-242b-44a6-b48d-2db302b5ea7a/0.mp4", "/datasets/ego4d/egovlp/full_scale_256_chunked/84d6855a-242b-44a6-b48d-2db302b5ea7a/0.mp4"], ["/datasets/ego4d/egovlp/full_scale_256_chunked/81fff27c-97c0-483a-ad42-47fa947977a9/9.mp4", "/datasets/ego4d/egovlp/full_scale_256_chunked/81fff27c-97c0-483a-ad42-47fa947977a9/9.mp4"]]}}
|
data/svitt-ego-demo/3/tensors.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ace4bcc2911dc78fc7ef6802c9c2b392207e42811e7449e628adf39ffa5f84c
|
3 |
+
size 12042987
|
data/svitt-ego-demo/3/video/2a6b3d10-8da9-4f0e-a681-59ba48a55dbf-converted.mp4
ADDED
Binary file (40.5 kB). View file
|
|
data/svitt-ego-demo/3/video/5afd7421-fb6b-4c65-a09a-716f79a7a935-converted.mp4
ADDED
Binary file (40.2 kB). View file
|
|
data/svitt-ego-demo/3/video/81fff27c-97c0-483a-ad42-47fa947977a9-converted.mp4
ADDED
Binary file (135 kB). View file
|
|
data/svitt-ego-demo/3/video/84d6855a-242b-44a6-b48d-2db302b5ea7a-converted.mp4
ADDED
Binary file (38.7 kB). View file
|
|
data/svitt-ego-demo/3/video/f7aec252-bd4f-4696-8de5-ef7b871e2194-converted.mp4
ADDED
Binary file (16.1 kB). View file
|
|
demo.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### demo.py
|
2 |
+
# Define model classes for inference.
|
3 |
+
###
|
4 |
+
import json
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.backends.cudnn as cudnn
|
8 |
+
from einops import rearrange
|
9 |
+
from transformers import BertTokenizer
|
10 |
+
from torchvision import transforms
|
11 |
+
from torchvision.transforms._transforms_video import (
|
12 |
+
NormalizeVideo,
|
13 |
+
)
|
14 |
+
|
15 |
+
from svitt.model import SViTT
|
16 |
+
from svitt.config import load_cfg, setup_config
|
17 |
+
from svitt.base_dataset import read_frames_cv2_egoclip
|
18 |
+
|
19 |
+
|
20 |
+
class VideoModel(nn.Module):
|
21 |
+
""" Base model for video understanding based on SViTT architecture. """
|
22 |
+
def __init__(self, config):
|
23 |
+
""" Initializes the model.
|
24 |
+
Parameters:
|
25 |
+
config: config file
|
26 |
+
"""
|
27 |
+
super(VideoModel, self).__init__()
|
28 |
+
self.cfg = load_cfg(config)
|
29 |
+
self.model = self.build_model()
|
30 |
+
self.templates = ['{}']
|
31 |
+
self.dataset = self.cfg['data']['dataset']
|
32 |
+
self.eval()
|
33 |
+
|
34 |
+
def build_model(self):
|
35 |
+
cfg = self.cfg
|
36 |
+
if cfg['model'].get('pretrain', False):
|
37 |
+
ckpt_path = cfg['model']['pretrain']
|
38 |
+
else:
|
39 |
+
raise Exception('no checkpoint found')
|
40 |
+
|
41 |
+
if cfg['model'].get('config', False):
|
42 |
+
config_path = cfg['model']['config']
|
43 |
+
else:
|
44 |
+
raise Exception('no model config found')
|
45 |
+
|
46 |
+
self.model_cfg = setup_config(config_path)
|
47 |
+
self.tokenizer = BertTokenizer.from_pretrained(self.model_cfg.text_encoder)
|
48 |
+
model = SViTT(config=self.model_cfg, tokenizer=self.tokenizer)
|
49 |
+
|
50 |
+
print(f"Loading checkpoint from {ckpt_path}")
|
51 |
+
checkpoint = torch.load(ckpt_path, map_location="cpu")
|
52 |
+
state_dict = checkpoint["model"]
|
53 |
+
|
54 |
+
# fix for zero-shot evaluation
|
55 |
+
for key in list(state_dict.keys()):
|
56 |
+
if "bert" in key:
|
57 |
+
encoder_key = key.replace("bert.", "")
|
58 |
+
state_dict[encoder_key] = state_dict[key]
|
59 |
+
|
60 |
+
if torch.cuda.is_available():
|
61 |
+
model.cuda()
|
62 |
+
|
63 |
+
model.load_state_dict(state_dict, strict=False)
|
64 |
+
|
65 |
+
return model
|
66 |
+
|
67 |
+
def eval(self):
|
68 |
+
cudnn.benchmark = True
|
69 |
+
for p in self.model.parameters():
|
70 |
+
p.requires_grad = False
|
71 |
+
self.model.eval()
|
72 |
+
|
73 |
+
|
74 |
+
class VideoCLSModel(VideoModel):
|
75 |
+
""" Video model for video classification tasks (Charades-Ego, EGTEA). """
|
76 |
+
def __init__(self, config, sample_videos):
|
77 |
+
super(VideoCLSModel, self).__init__(config)
|
78 |
+
self.sample_videos = sample_videos
|
79 |
+
self.video_transform = self.init_video_transform()
|
80 |
+
|
81 |
+
#def load_data(self, idx=None):
|
82 |
+
# filename = f"{self.cfg['data']['root']}/{idx}/tensors.pt"
|
83 |
+
# return torch.load(filename)
|
84 |
+
def init_video_transform(self,
|
85 |
+
input_res=224,
|
86 |
+
center_crop=256,
|
87 |
+
norm_mean=(0.485, 0.456, 0.406),
|
88 |
+
norm_std=(0.229, 0.224, 0.225),
|
89 |
+
):
|
90 |
+
print('Video Transform is used!')
|
91 |
+
normalize = NormalizeVideo(mean=norm_mean, std=norm_std)
|
92 |
+
return transforms.Compose(
|
93 |
+
[
|
94 |
+
transforms.Resize(center_crop),
|
95 |
+
transforms.CenterCrop(center_crop),
|
96 |
+
transforms.Resize(input_res),
|
97 |
+
normalize,
|
98 |
+
]
|
99 |
+
)
|
100 |
+
|
101 |
+
def load_data(self, idx):
|
102 |
+
num_frames = self.model_cfg.video_input.num_frames
|
103 |
+
video_paths = self.sample_videos[idx]
|
104 |
+
clips = [None] * len(video_paths)
|
105 |
+
for i, path in enumerate(video_paths):
|
106 |
+
imgs = read_frames_cv2_egoclip(path, num_frames, 'uniform')
|
107 |
+
imgs = imgs.transpose(0, 1)
|
108 |
+
imgs = self.video_transform(imgs)
|
109 |
+
imgs = imgs.transpose(0, 1)
|
110 |
+
clips[i] = imgs
|
111 |
+
return torch.stack(clips)
|
112 |
+
|
113 |
+
def load_meta(self, idx=None):
|
114 |
+
filename = f"{self.cfg['data']['root']}/{idx}/meta.json"
|
115 |
+
with open(filename, "r") as f:
|
116 |
+
meta = json.load(f)
|
117 |
+
return meta
|
118 |
+
|
119 |
+
@torch.no_grad()
|
120 |
+
def get_text_features(self, text):
|
121 |
+
print('=> Extracting text features')
|
122 |
+
embeddings = self.tokenizer(
|
123 |
+
text,
|
124 |
+
padding="max_length",
|
125 |
+
truncation=True,
|
126 |
+
max_length=self.model_cfg.max_txt_l.video,
|
127 |
+
return_tensors="pt",
|
128 |
+
)
|
129 |
+
_, class_embeddings = self.model.encode_text(embeddings)
|
130 |
+
return class_embeddings
|
131 |
+
|
132 |
+
@torch.no_grad()
|
133 |
+
def forward(self, idx, text=None):
|
134 |
+
print('=> Start forwarding')
|
135 |
+
meta = self.load_meta(idx)
|
136 |
+
clips = self.load_data(idx)
|
137 |
+
if text is None:
|
138 |
+
text = meta["text"][4:]
|
139 |
+
text_features = self.get_text_features(text)
|
140 |
+
target = meta["correct"]
|
141 |
+
|
142 |
+
# encode images
|
143 |
+
pooled_image_feat_all = []
|
144 |
+
for i in range(clips.shape[0]):
|
145 |
+
|
146 |
+
images = clips[i,:].unsqueeze(0)
|
147 |
+
bsz = images.shape[0]
|
148 |
+
|
149 |
+
_, pooled_image_feat, *outputs = self.model.encode_image(images)
|
150 |
+
if pooled_image_feat.ndim == 3:
|
151 |
+
pooled_image_feat = rearrange(pooled_image_feat, '(b k) n d -> b (k n) d', b=bsz)
|
152 |
+
else:
|
153 |
+
pooled_image_feat = rearrange(pooled_image_feat, '(b k) d -> b k d', b=bsz)
|
154 |
+
|
155 |
+
pooled_image_feat_all.append(pooled_image_feat)
|
156 |
+
|
157 |
+
pooled_image_feat_all = torch.cat(pooled_image_feat_all, dim=0)
|
158 |
+
similarity = self.model.get_sim(pooled_image_feat_all, text_features)[0]
|
159 |
+
return similarity.argmax(), target
|
160 |
+
|
161 |
+
@torch.no_grad()
|
162 |
+
def predict(self, idx, text=None):
|
163 |
+
output, target = self.forward(idx, text)
|
164 |
+
return output.numpy(), target
|
165 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
torchvision
|
4 |
+
scikit-learn
|
5 |
+
eva-decord
|
6 |
+
timm
|
7 |
+
einops
|
8 |
+
ftfy
|
9 |
+
regex
|
10 |
+
transformers
|
11 |
+
omegaconf
|
12 |
+
zCurve
|
13 |
+
numpy-hilbert-curve
|
14 |
+
opencv-python-headless
|
svitt/base_dataset.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
|
8 |
+
def sample_frames_start_end(num_frames, start, end, sample='rand', fix_start=None):
|
9 |
+
acc_samples = min(num_frames, end)
|
10 |
+
intervals = np.linspace(start=start, stop=end, num=acc_samples + 1).astype(int)
|
11 |
+
ranges = [(interv, intervals[idx + 1] - 1) for idx, interv in enumerate(intervals[:-1])]
|
12 |
+
if sample == 'rand':
|
13 |
+
frame_idxs = [random.choice(range(x[0], x[1])) for x in ranges]
|
14 |
+
elif fix_start is not None:
|
15 |
+
frame_idxs = [x[0] + fix_start for x in ranges]
|
16 |
+
elif sample == 'uniform':
|
17 |
+
frame_idxs = [(x[0] + x[1]) // 2 for x in ranges]
|
18 |
+
else:
|
19 |
+
raise NotImplementedError
|
20 |
+
return frame_idxs
|
21 |
+
|
22 |
+
def read_frames_cv2_egoclip(
|
23 |
+
video_path,
|
24 |
+
num_frames,
|
25 |
+
sample,
|
26 |
+
):
|
27 |
+
|
28 |
+
cap = cv2.VideoCapture(video_path)
|
29 |
+
vlen = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
30 |
+
assert (cap.isOpened())
|
31 |
+
|
32 |
+
# get indexes of sampled frames
|
33 |
+
start_f = 0
|
34 |
+
end_f = vlen
|
35 |
+
frame_idxs = sample_frames_start_end(num_frames, start_f, end_f, sample=sample)
|
36 |
+
|
37 |
+
frames = []
|
38 |
+
for index in frame_idxs:
|
39 |
+
_index = index % (600 * 30)
|
40 |
+
_index = min(_index, vlen)
|
41 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, _index - 1)
|
42 |
+
ret, frame = cap.read()
|
43 |
+
|
44 |
+
if ret:
|
45 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
46 |
+
frame = torch.from_numpy(frame)
|
47 |
+
# (H x W x C) to (C x H x W)
|
48 |
+
frame = frame.permute(2, 0, 1)
|
49 |
+
frames.append(frame)
|
50 |
+
|
51 |
+
while len(frames) < num_frames: # complete the frame
|
52 |
+
frames.append(frames[-1])
|
53 |
+
|
54 |
+
frames = torch.stack(frames).float() / 255
|
55 |
+
cap.release()
|
56 |
+
return frames
|
svitt/config.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import yaml
|
3 |
+
from omegaconf import OmegaConf, DictConfig
|
4 |
+
|
5 |
+
def load_base_cfg():
|
6 |
+
with open('configs/base.yml', 'r') as fp:
|
7 |
+
cfg = yaml.load(fp, Loader=yaml.SafeLoader)
|
8 |
+
return cfg
|
9 |
+
|
10 |
+
def load_cfg(cfg_file):
|
11 |
+
cfg = load_base_cfg()
|
12 |
+
with open(cfg_file, 'r') as fp:
|
13 |
+
exp_cfg = yaml.load(fp, Loader=yaml.SafeLoader)
|
14 |
+
|
15 |
+
cfg['model'].update(exp_cfg.get('model', {}))
|
16 |
+
cfg['data'].update(exp_cfg.get('data', {}))
|
17 |
+
return cfg
|
18 |
+
|
19 |
+
def convert_types(config):
|
20 |
+
"""Convert `'None'` (str) --> `None` (None). Only supports top-level"""
|
21 |
+
for k, v in config.items():
|
22 |
+
if isinstance(v, DictConfig):
|
23 |
+
setattr(config, k, convert_types(v))
|
24 |
+
|
25 |
+
# TODO convert types in ListConfig, right now they are ignored
|
26 |
+
# if isinstance(v, ListConfig):
|
27 |
+
# new_v = ListConfig()
|
28 |
+
|
29 |
+
if v in ["None", "none"]:
|
30 |
+
setattr(config, k, None)
|
31 |
+
return config
|
32 |
+
|
33 |
+
def setup_config(config_path):
|
34 |
+
yaml_config = OmegaConf.load(config_path)
|
35 |
+
config = convert_types(yaml_config)
|
36 |
+
return config
|
svitt/model.py
ADDED
@@ -0,0 +1,340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from svitt.utils import (
|
2 |
+
interpolate_pos_embed,
|
3 |
+
interpolate_pos_relative_bias_beit_3d,
|
4 |
+
)
|
5 |
+
from omegaconf import OmegaConf
|
6 |
+
from transformers import ViTModel, ViTConfig
|
7 |
+
from svitt.sparse_config import BertConfig, BeitConfig
|
8 |
+
from svitt.sparse_xbeit import BeitModel
|
9 |
+
from svitt.sparse_xbert import BertModel, BertForMaskedLM
|
10 |
+
|
11 |
+
import torch
|
12 |
+
from torch import nn
|
13 |
+
import torch.nn.functional as F
|
14 |
+
|
15 |
+
|
16 |
+
class SViTT(nn.Module):
|
17 |
+
"""Common utils shared by pretraining and downstream retrieval"""
|
18 |
+
def __init__(self, config=None, tokenizer=None, pretrain=True, **kwargs):
|
19 |
+
super().__init__()
|
20 |
+
self.config = config
|
21 |
+
self.tokenizer = tokenizer
|
22 |
+
self.embed_dim = config.embed_dim
|
23 |
+
self.vision_width = 768
|
24 |
+
self.text_width = 768
|
25 |
+
self.pretrain = pretrain
|
26 |
+
|
27 |
+
self.vision_encoder, self.vision_layernorm = self.build_vision_encoder()
|
28 |
+
self.text_encoder = self.build_text_encoder()
|
29 |
+
|
30 |
+
self.vision_proj = nn.Linear(self.vision_width, self.embed_dim)
|
31 |
+
self.text_proj = nn.Linear(self.text_width, self.embed_dim)
|
32 |
+
|
33 |
+
self.temp = nn.Parameter(torch.ones([]) * config.temp)
|
34 |
+
self.itm_head = nn.Linear(self.text_width, 2)
|
35 |
+
|
36 |
+
|
37 |
+
def build_text_encoder(self):
|
38 |
+
|
39 |
+
bert_config = BertConfig.from_json_file(self.config.bert_config)
|
40 |
+
|
41 |
+
# Override params for sparse vision encoder
|
42 |
+
model_args = getattr(self.config, 'text_encoder_args', {})
|
43 |
+
if model_args:
|
44 |
+
model_args = OmegaConf.to_object(model_args)
|
45 |
+
bert_config.update(model_args)
|
46 |
+
|
47 |
+
if self.pretrain:
|
48 |
+
text_encoder, _ = BertForMaskedLM.from_pretrained(
|
49 |
+
self.config.text_encoder, config=bert_config,
|
50 |
+
output_loading_info=True
|
51 |
+
)
|
52 |
+
else:
|
53 |
+
text_encoder, _ = BertModel.from_pretrained(
|
54 |
+
self.config.text_encoder, config=bert_config,
|
55 |
+
add_pooling_layer=False, output_loading_info=True
|
56 |
+
)
|
57 |
+
return text_encoder
|
58 |
+
|
59 |
+
def build_vision_encoder(self):
|
60 |
+
# if self.config.vit_type in ["beit", "deit", "vit", "vit32"]:
|
61 |
+
if self.config.vit_type in ["beit"]:
|
62 |
+
vision_encoder = self.build_huggingface_vit_with_image_size(
|
63 |
+
self.config.vit_name_or_pretrained_path, self.config.image_res,)
|
64 |
+
else:
|
65 |
+
raise ValueError(f"Unknown vit type {self.config.vit_type}")
|
66 |
+
|
67 |
+
# add layernorm for normalizing BEiT outputs hidden states
|
68 |
+
vision_layernorm = None
|
69 |
+
if self.config.vit_type == "beit":
|
70 |
+
vision_layernorm = nn.LayerNorm(self.vision_width, eps=1e-12)
|
71 |
+
return vision_encoder, vision_layernorm
|
72 |
+
|
73 |
+
# @classmethod
|
74 |
+
# def build_huggingface_vit_with_image_size(cls, model_card: str, image_size: int):
|
75 |
+
def build_huggingface_vit_with_image_size(self, model_card: str, image_size: int):
|
76 |
+
"""Build a vit model from huggingface hub, also interpolate pos_embed when needed.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
model_card: name in huggingface hub, e.g., `facebook/deit-base-patch16-224`
|
80 |
+
image_size: new image size, may be different from pre-training image_size of `model_card`
|
81 |
+
|
82 |
+
ref: https://github.com/huggingface/transformers/issues/12167#issuecomment-861356232
|
83 |
+
"""
|
84 |
+
is_beit = "beit" in model_card
|
85 |
+
if "beit" in model_card:
|
86 |
+
model_cls, config_cls = BeitModel, BeitConfig
|
87 |
+
elif "deit" in model_card or "vit" in model_card:
|
88 |
+
# the deit model we use is loaded in vit arch,
|
89 |
+
# see https://huggingface.co/facebook/deit-base-patch16-224#how-to-use
|
90 |
+
model_cls, config_cls = ViTModel, ViTConfig
|
91 |
+
else:
|
92 |
+
raise ValueError(f"Unexpected model_card: {model_card}")
|
93 |
+
|
94 |
+
# BEiT uses average pooled tokens instead of [CLS] used by other models
|
95 |
+
tmp_model = model_cls.from_pretrained(model_card, add_pooling_layer=is_beit)
|
96 |
+
state_dict = tmp_model.state_dict()
|
97 |
+
del tmp_model
|
98 |
+
|
99 |
+
# Override params for sparse vision encoder
|
100 |
+
model_args = getattr(self.config, 'vision_encoder_args', {})
|
101 |
+
if model_args:
|
102 |
+
model_args = OmegaConf.to_object(model_args)
|
103 |
+
model_config = config_cls.from_pretrained(
|
104 |
+
model_card,
|
105 |
+
image_size=image_size,
|
106 |
+
**model_args,
|
107 |
+
)
|
108 |
+
model = model_cls(config=model_config, add_pooling_layer=is_beit, num_frames=self.config.video_input.num_frames)
|
109 |
+
if is_beit:
|
110 |
+
# interpolate relative pos bias
|
111 |
+
state_dict = interpolate_pos_relative_bias_beit_3d(
|
112 |
+
state_dict_old=state_dict,
|
113 |
+
state_dict_new=model.state_dict(),
|
114 |
+
patch_shape_new=model.window_size
|
115 |
+
)
|
116 |
+
else:
|
117 |
+
# interpolate pos_embed and load weights to new model
|
118 |
+
state_dict["embeddings.position_embeddings"] = interpolate_pos_embed(
|
119 |
+
pos_embed_old=state_dict["embeddings.position_embeddings"],
|
120 |
+
pos_embed_new=model.embeddings.position_embeddings,
|
121 |
+
num_patches_new=model.embeddings.patch_embeddings.num_patches
|
122 |
+
)
|
123 |
+
msg = model.load_state_dict(state_dict, strict=False)
|
124 |
+
return model
|
125 |
+
|
126 |
+
def get_text_encoder(self):
|
127 |
+
"""get text encoder, used for text and cross-modal encoding"""
|
128 |
+
encoder = self.text_encoder
|
129 |
+
return encoder.bert if hasattr(encoder, "bert") else encoder
|
130 |
+
|
131 |
+
def encode_image(self, video, output_token_idx=False, output_attentions=False):
|
132 |
+
video_embeds = self.vision_encoder(video, output_token_idx=output_token_idx, output_attentions=output_attentions) # (bsz, seq_len, d)
|
133 |
+
if self.vision_layernorm is not None: # only for BEiT mean-pooling
|
134 |
+
video_embeds.last_hidden_state = self.vision_layernorm(video_embeds.last_hidden_state)
|
135 |
+
if output_token_idx:
|
136 |
+
token_idx = video_embeds.token_idx
|
137 |
+
|
138 |
+
if output_attentions:
|
139 |
+
attentions = video_embeds.attentions
|
140 |
+
|
141 |
+
if self.config.vit_type == "beit":
|
142 |
+
pooled_video_embeds = video_embeds.pooler_output # (bsz*num_frms, d)
|
143 |
+
video_embeds = video_embeds.last_hidden_state # (bsz*num_frms, L, d)
|
144 |
+
else:
|
145 |
+
video_embeds = video_embeds.last_hidden_state
|
146 |
+
pooled_video_embeds = video_embeds[:, 0]
|
147 |
+
|
148 |
+
outputs = (video_embeds, pooled_video_embeds)
|
149 |
+
|
150 |
+
if output_token_idx:
|
151 |
+
outputs += (token_idx,)
|
152 |
+
|
153 |
+
if output_attentions:
|
154 |
+
outputs += (attentions,)
|
155 |
+
|
156 |
+
return outputs
|
157 |
+
|
158 |
+
def _encode_image(self, image):
|
159 |
+
bsz, num_frms, c, h, w = image.shape # `num_frms` could be changing for image (=1) or video (e.g., =4)
|
160 |
+
image = image.view(bsz*num_frms, c, h, w)
|
161 |
+
image_embeds = self.vision_encoder(image)
|
162 |
+
if self.vision_layernorm is not None: # only for BEiT mean-pooling
|
163 |
+
image_embeds.last_hidden_state = self.vision_layernorm(image_embeds.last_hidden_state)
|
164 |
+
|
165 |
+
if self.config.vit_type == "beit":
|
166 |
+
pooled_image_embeds = image_embeds.pooler_output # (bsz*num_frms, d)
|
167 |
+
image_embeds = image_embeds.last_hidden_state # (bsz*num_frms, L, d)
|
168 |
+
else:
|
169 |
+
image_embeds = image_embeds.last_hidden_state
|
170 |
+
pooled_image_embeds = image_embeds[:, 0]
|
171 |
+
|
172 |
+
image_embeds = image_embeds.view(bsz, num_frms, -1, self.vision_width) # (bsz, num_frms, L, d)
|
173 |
+
pooled_image_embeds = pooled_image_embeds.view(bsz, num_frms, self.vision_width) \
|
174 |
+
if pooled_image_embeds is not None else None # (bsz, num_frms, d)
|
175 |
+
return image_embeds, pooled_image_embeds
|
176 |
+
|
177 |
+
def encode_text(self, text):
|
178 |
+
text_output = self.get_text_encoder()(
|
179 |
+
text.input_ids,
|
180 |
+
attention_mask=text.attention_mask,
|
181 |
+
return_dict=True,
|
182 |
+
mode='text'
|
183 |
+
)
|
184 |
+
text_embeds = text_output.last_hidden_state
|
185 |
+
pooled_text_embeds = text_embeds[:, 0]
|
186 |
+
return text_embeds, pooled_text_embeds
|
187 |
+
|
188 |
+
@torch.no_grad()
|
189 |
+
def clip_contrastive_temperature(self, min_val=0.001, max_val=0.5):
|
190 |
+
"""Seems only used during pre-training"""
|
191 |
+
self.temp.clamp_(min_val, max_val)
|
192 |
+
|
193 |
+
@torch.no_grad()
|
194 |
+
def get_mask(self, sim, idx=None, normalize=False):
|
195 |
+
"""
|
196 |
+
sim: (N, N)
|
197 |
+
idx: (N, )
|
198 |
+
normalize: bool, make row sum equal to 1
|
199 |
+
"""
|
200 |
+
if idx is not None:
|
201 |
+
idx = idx.view(-1, 1)
|
202 |
+
mask = torch.eq(idx, idx.T).to(sim.dtype)
|
203 |
+
if normalize:
|
204 |
+
mask = mask / mask.sum(1, keepdim=True)
|
205 |
+
else:
|
206 |
+
mask = torch.zeros_like(sim)
|
207 |
+
mask.fill_diagonal_(1)
|
208 |
+
return mask # `1` mark valid/matched location
|
209 |
+
|
210 |
+
def get_contrastive_loss(self, pooled_image_embeds, pooled_text_embeds, idx=None):
|
211 |
+
sim_i2t, sim_t2i = self.get_sim(
|
212 |
+
pooled_image_embeds, pooled_text_embeds, t=self.temp)
|
213 |
+
|
214 |
+
with torch.no_grad():
|
215 |
+
sim_i2t_targets = self.get_mask(sim_i2t, idx=idx, normalize=True)
|
216 |
+
sim_t2i_targets = sim_i2t_targets
|
217 |
+
|
218 |
+
loss_i2t = -torch.sum(
|
219 |
+
F.log_softmax(sim_i2t, dim=1) * sim_i2t_targets, dim=1).mean()
|
220 |
+
loss_t2i = -torch.sum(
|
221 |
+
F.log_softmax(sim_t2i, dim=1) * sim_t2i_targets, dim=1).mean()
|
222 |
+
|
223 |
+
loss_ita = (loss_i2t + loss_t2i) / 2
|
224 |
+
return loss_ita, sim_i2t, sim_t2i
|
225 |
+
|
226 |
+
def get_sim(self, pooled_image_embeds, pooled_text_embeds, t=1):
|
227 |
+
"""
|
228 |
+
Args:
|
229 |
+
pooled_image_embeds: (bsz, num_frms, d)
|
230 |
+
pooled_text_embeds: (bsz, d)
|
231 |
+
t: temperature
|
232 |
+
"""
|
233 |
+
image_proj = self.vision_proj
|
234 |
+
text_proj = self.text_proj
|
235 |
+
|
236 |
+
image_feat = F.normalize(image_proj(pooled_image_embeds), dim=-1)
|
237 |
+
text_feat = F.normalize(text_proj(pooled_text_embeds), dim=-1)
|
238 |
+
|
239 |
+
if image_feat.ndim == 3:
|
240 |
+
sim_i2t = torch.einsum("mld,nd->mln", image_feat, text_feat).mean(1) / t # (N, N)
|
241 |
+
else:
|
242 |
+
sim_i2t = torch.einsum("md,nd ->mn", image_feat, text_feat) / t # (N, N)
|
243 |
+
sim_t2i = sim_i2t.T
|
244 |
+
return sim_i2t, sim_t2i
|
245 |
+
|
246 |
+
def get_itm_loss(self,
|
247 |
+
sim_i2t,
|
248 |
+
sim_t2i,
|
249 |
+
text_embeds,
|
250 |
+
text_atts,
|
251 |
+
image_embeds,
|
252 |
+
image_atts,
|
253 |
+
idx=None,
|
254 |
+
):
|
255 |
+
"""
|
256 |
+
sim_i2t, sim_t2i: (N, N)
|
257 |
+
text_embeds, text_atts, image_embeds, image_atts: (N, *)
|
258 |
+
idx: (N, )
|
259 |
+
"""
|
260 |
+
bsz = len(sim_i2t)
|
261 |
+
|
262 |
+
with torch.no_grad():
|
263 |
+
weights_i2t = F.softmax(sim_i2t+1e-4, dim=1) # (N, N)
|
264 |
+
weights_t2i = F.softmax(sim_t2i+1e-4, dim=1)
|
265 |
+
|
266 |
+
mask = self.get_mask(sim_i2t, idx=idx).bool()
|
267 |
+
weights_i2t.masked_fill_(mask, 0)
|
268 |
+
weights_t2i.masked_fill_(mask, 0)
|
269 |
+
|
270 |
+
# select a negative image for each text
|
271 |
+
if self.config.itm_hard_neg:
|
272 |
+
img_neg_indices = torch.multinomial(weights_t2i, 1).squeeze() #RuntimeError: invalid multinomial distribution (sum of probabilities <= 0)
|
273 |
+
else:
|
274 |
+
img_neg_indices = self.get_rand_indices(mask, 1).squeeze()
|
275 |
+
|
276 |
+
image_embeds_neg = image_embeds[img_neg_indices]
|
277 |
+
|
278 |
+
# select a negative text for each image
|
279 |
+
if self.config.itm_hard_neg:
|
280 |
+
txt_neg_indices = torch.multinomial(weights_i2t, 1).squeeze()
|
281 |
+
else:
|
282 |
+
txt_neg_indices = self.get_rand_indices(mask, 1).squeeze()
|
283 |
+
|
284 |
+
text_embeds_neg = text_embeds[txt_neg_indices]
|
285 |
+
text_atts_neg = text_atts[txt_neg_indices] # (N, L, d)
|
286 |
+
|
287 |
+
# embedding on local gpu
|
288 |
+
_text_embeds = text_embeds
|
289 |
+
_text_atts = text_atts
|
290 |
+
_image_embeds = image_embeds
|
291 |
+
_image_atts = image_atts
|
292 |
+
# concat embeddings
|
293 |
+
text_embeds_all = torch.cat([_text_embeds, _text_embeds, text_embeds_neg], dim=0)
|
294 |
+
text_atts_all = torch.cat([_text_atts, _text_atts, text_atts_neg], dim=0)
|
295 |
+
image_embeds_all = torch.cat([_image_embeds, image_embeds_neg, _image_embeds], dim=0)
|
296 |
+
image_atts_all = torch.cat([_image_atts, _image_atts, _image_atts], dim=0)
|
297 |
+
|
298 |
+
text_encoder = self.get_text_encoder()
|
299 |
+
output = text_encoder(
|
300 |
+
encoder_embeds=text_embeds_all,
|
301 |
+
attention_mask=text_atts_all,
|
302 |
+
encoder_hidden_states=image_embeds_all,
|
303 |
+
encoder_attention_mask=image_atts_all,
|
304 |
+
return_dict=True,
|
305 |
+
mode='fusion',
|
306 |
+
)
|
307 |
+
|
308 |
+
itm_embeds = output.last_hidden_state[:, 0] # pos (N, d) + neg (2N, d)
|
309 |
+
|
310 |
+
loss_itm = self._get_itm_loss(itm_embeds, enc=self.itm_head)
|
311 |
+
itm_embeds_pos = itm_embeds[:bsz] # (N, d)
|
312 |
+
|
313 |
+
return loss_itm, itm_embeds_pos
|
314 |
+
|
315 |
+
def _get_itm_loss(self, itm_embeds, enc):
|
316 |
+
"""
|
317 |
+
itm_embeds: (3*N, D)
|
318 |
+
enc: nn.Module that projects cls_embeds
|
319 |
+
"""
|
320 |
+
itm_scores = enc(itm_embeds) # (3*N, 2)
|
321 |
+
bs = itm_scores.size(0) // 3
|
322 |
+
itm_labels = itm_scores.new_ones(3*bs, dtype=torch.long)
|
323 |
+
itm_labels[bs:] = 0
|
324 |
+
loss_itm = F.cross_entropy(itm_scores, itm_labels)
|
325 |
+
return loss_itm
|
326 |
+
|
327 |
+
def get_rand_indices(self, mask, k):
|
328 |
+
"""
|
329 |
+
Args:
|
330 |
+
mask: (N, L) 0 indicates the positions that we can sample, 1 otherwise
|
331 |
+
k: #indices to sample at each row
|
332 |
+
Returns:
|
333 |
+
(N, k) indices
|
334 |
+
"""
|
335 |
+
mask = mask.float()
|
336 |
+
mask = mask - 10000 * mask
|
337 |
+
mask += torch.randn_like(mask)
|
338 |
+
_, indices = torch.sort(mask, dim=1, descending=True)
|
339 |
+
indices = indices[:, :k].contiguous()
|
340 |
+
return indices
|
svitt/sparse_config.py
ADDED
@@ -0,0 +1,351 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright Microsoft Research and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from collections import OrderedDict
|
17 |
+
from typing import Mapping
|
18 |
+
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
from transformers.onnx import OnnxConfig
|
21 |
+
|
22 |
+
|
23 |
+
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
24 |
+
"bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json",
|
25 |
+
"bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json",
|
26 |
+
"bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json",
|
27 |
+
"bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json",
|
28 |
+
"bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json",
|
29 |
+
"bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json",
|
30 |
+
"bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json",
|
31 |
+
"bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json",
|
32 |
+
"bert-large-uncased-whole-word-masking": "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json",
|
33 |
+
"bert-large-cased-whole-word-masking": "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json",
|
34 |
+
"bert-large-uncased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json",
|
35 |
+
"bert-large-cased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json",
|
36 |
+
"bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json",
|
37 |
+
"bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json",
|
38 |
+
"bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json",
|
39 |
+
"cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json",
|
40 |
+
"cl-tohoku/bert-base-japanese-whole-word-masking": "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json",
|
41 |
+
"cl-tohoku/bert-base-japanese-char": "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json",
|
42 |
+
"cl-tohoku/bert-base-japanese-char-whole-word-masking": "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json",
|
43 |
+
"TurkuNLP/bert-base-finnish-cased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json",
|
44 |
+
"TurkuNLP/bert-base-finnish-uncased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json",
|
45 |
+
"wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json",
|
46 |
+
# See all BERT models at https://huggingface.co/models?filter=bert
|
47 |
+
}
|
48 |
+
|
49 |
+
|
50 |
+
class BertConfig(PretrainedConfig):
|
51 |
+
r"""
|
52 |
+
This is the configuration class to store the configuration of a [`BertModel`] or a
|
53 |
+
[`TFBertModel`]. It is used to instantiate a BERT model according to the specified arguments,
|
54 |
+
defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration
|
55 |
+
to that of the BERT [bert-base-uncased](https://huggingface.co/bert-base-uncased) architecture.
|
56 |
+
|
57 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model
|
58 |
+
outputs. Read the documentation from [`PretrainedConfig`] for more information.
|
59 |
+
|
60 |
+
|
61 |
+
Args:
|
62 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
63 |
+
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
|
64 |
+
`inputs_ids` passed when calling [`BertModel`] or
|
65 |
+
[`TFBertModel`].
|
66 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
67 |
+
Dimensionality of the encoder layers and the pooler layer.
|
68 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
69 |
+
Number of hidden layers in the Transformer encoder.
|
70 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
71 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
72 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
73 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
74 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
75 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string,
|
76 |
+
`"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported.
|
77 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
78 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
79 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
80 |
+
The dropout ratio for the attention probabilities.
|
81 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
82 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
83 |
+
just in case (e.g., 512 or 1024 or 2048).
|
84 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
85 |
+
The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or
|
86 |
+
[`TFBertModel`].
|
87 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
88 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
89 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
90 |
+
The epsilon used by the layer normalization layers.
|
91 |
+
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
92 |
+
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`,
|
93 |
+
`"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on
|
94 |
+
`"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to
|
95 |
+
*Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
96 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
97 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
98 |
+
relevant if `config.is_decoder=True`.
|
99 |
+
classifier_dropout (`float`, *optional*):
|
100 |
+
The dropout ratio for the classification head.
|
101 |
+
|
102 |
+
Examples:
|
103 |
+
|
104 |
+
```python
|
105 |
+
>>> from transformers import BertModel, BertConfig
|
106 |
+
|
107 |
+
>>> # Initializing a BERT bert-base-uncased style configuration
|
108 |
+
>>> configuration = BertConfig()
|
109 |
+
|
110 |
+
>>> # Initializing a model from the bert-base-uncased style configuration
|
111 |
+
>>> model = BertModel(configuration)
|
112 |
+
|
113 |
+
>>> # Accessing the model configuration
|
114 |
+
>>> configuration = model.config
|
115 |
+
```"""
|
116 |
+
model_type = "bert"
|
117 |
+
|
118 |
+
def __init__(
|
119 |
+
self,
|
120 |
+
vocab_size=30522,
|
121 |
+
hidden_size=768,
|
122 |
+
num_hidden_layers=12,
|
123 |
+
num_attention_heads=12,
|
124 |
+
intermediate_size=3072,
|
125 |
+
hidden_act="gelu",
|
126 |
+
hidden_dropout_prob=0.1,
|
127 |
+
attention_probs_dropout_prob=0.1,
|
128 |
+
max_position_embeddings=512,
|
129 |
+
type_vocab_size=2,
|
130 |
+
initializer_range=0.02,
|
131 |
+
layer_norm_eps=1e-12,
|
132 |
+
pad_token_id=0,
|
133 |
+
position_embedding_type="absolute",
|
134 |
+
use_cache=True,
|
135 |
+
classifier_dropout=None,
|
136 |
+
token_keep_rate=1,
|
137 |
+
token_keep_strategy='cls_attn',
|
138 |
+
token_drop_loc=[9],
|
139 |
+
**kwargs
|
140 |
+
):
|
141 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
142 |
+
|
143 |
+
self.vocab_size = vocab_size
|
144 |
+
self.hidden_size = hidden_size
|
145 |
+
self.num_hidden_layers = num_hidden_layers
|
146 |
+
self.num_attention_heads = num_attention_heads
|
147 |
+
self.hidden_act = hidden_act
|
148 |
+
self.intermediate_size = intermediate_size
|
149 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
150 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
151 |
+
self.max_position_embeddings = max_position_embeddings
|
152 |
+
self.type_vocab_size = type_vocab_size
|
153 |
+
self.initializer_range = initializer_range
|
154 |
+
self.layer_norm_eps = layer_norm_eps
|
155 |
+
self.position_embedding_type = position_embedding_type
|
156 |
+
self.use_cache = use_cache
|
157 |
+
self.classifier_dropout = classifier_dropout
|
158 |
+
self.token_keep_rate = token_keep_rate
|
159 |
+
self.token_keep_strategy = token_keep_strategy
|
160 |
+
self.token_drop_loc = token_drop_loc
|
161 |
+
|
162 |
+
|
163 |
+
class BertOnnxConfig(OnnxConfig):
|
164 |
+
@property
|
165 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
166 |
+
return OrderedDict(
|
167 |
+
[
|
168 |
+
("input_ids", {0: "batch", 1: "sequence"}),
|
169 |
+
("attention_mask", {0: "batch", 1: "sequence"}),
|
170 |
+
("token_type_ids", {0: "batch", 1: "sequence"}),
|
171 |
+
]
|
172 |
+
)
|
173 |
+
|
174 |
+
|
175 |
+
BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
176 |
+
"microsoft/beit-base-patch16-224-in22k": "https://huggingface.co/microsoft/beit-base-patch16-224-in22k/resolve/main/config.json",
|
177 |
+
# See all BEiT models at https://huggingface.co/models?filter=beit
|
178 |
+
}
|
179 |
+
|
180 |
+
|
181 |
+
class BeitConfig(PretrainedConfig):
|
182 |
+
r"""
|
183 |
+
This is the configuration class to store the configuration of a [`BeitModel`]. It is used to
|
184 |
+
instantiate an BEiT model according to the specified arguments, defining the model architecture. Instantiating a
|
185 |
+
configuration with the defaults will yield a similar configuration to that of the BEiT
|
186 |
+
[microsoft/beit-base-patch16-224-in22k](https://huggingface.co/microsoft/beit-base-patch16-224-in22k)
|
187 |
+
architecture.
|
188 |
+
|
189 |
+
Args:
|
190 |
+
vocab_size (`int`, *optional*, defaults to 8092):
|
191 |
+
Vocabulary size of the BEiT model. Defines the number of different image tokens that can be used during
|
192 |
+
pre-training.
|
193 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
194 |
+
Dimensionality of the encoder layers and the pooler layer.
|
195 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
196 |
+
Number of hidden layers in the Transformer encoder.
|
197 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
198 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
199 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
200 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
201 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
202 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string,
|
203 |
+
`"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
|
204 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
205 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
206 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
207 |
+
The dropout ratio for the attention probabilities.
|
208 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
209 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
210 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
211 |
+
The epsilon used by the layer normalization layers.
|
212 |
+
image_size (`int`, *optional*, defaults to `224`):
|
213 |
+
The size (resolution) of each image.
|
214 |
+
patch_size (`int`, *optional*, defaults to `16`):
|
215 |
+
The size (resolution) of each patch.
|
216 |
+
num_channels (`int`, *optional*, defaults to `3`):
|
217 |
+
The number of input channels.
|
218 |
+
use_mask_token (`bool`, *optional*, defaults to `False`):
|
219 |
+
Whether to use a mask token for masked image modeling.
|
220 |
+
use_absolute_position_embeddings (`bool`, *optional*, defaults to `False`):
|
221 |
+
Whether to use BERT-style absolute position embeddings.
|
222 |
+
use_relative_position_bias (`bool`, *optional*, defaults to `False`):
|
223 |
+
Whether to use T5-style relative position embeddings in the self-attention layers.
|
224 |
+
use_shared_relative_position_bias (`bool`, *optional*, defaults to `False`):
|
225 |
+
Whether to use the same relative position embeddings across all self-attention layers of the Transformer.
|
226 |
+
layer_scale_init_value (`float`, *optional*, defaults to 0.1):
|
227 |
+
Scale to use in the self-attention layers. 0.1 for base, 1e-5 for large. Set 0 to disable layer scale.
|
228 |
+
drop_path_rate (`float`, *optional*, defaults to 0.1):
|
229 |
+
Stochastic depth rate per sample (when applied in the main path of residual layers).
|
230 |
+
use_mean_pooling (`bool`, *optional*, defaults to `True`):
|
231 |
+
Whether to mean pool the final hidden states of the patches instead of using the final hidden state of the
|
232 |
+
CLS token, before applying the classification head.
|
233 |
+
out_indices (`List[int]`, *optional*, defaults to `[3, 5, 7, 11]`):
|
234 |
+
Indices of the feature maps to use for semantic segmentation.
|
235 |
+
pool_scales (`Tuple[int]`, *optional*, defaults to `[1, 2, 3, 6]`):
|
236 |
+
Pooling scales used in Pooling Pyramid Module applied on the last feature map.
|
237 |
+
use_auxiliary_head (`bool`, *optional*, defaults to `True`):
|
238 |
+
Whether to use an auxiliary head during training.
|
239 |
+
auxiliary_loss_weight (`float`, *optional*, defaults to 0.4):
|
240 |
+
Weight of the cross-entropy loss of the auxiliary head.
|
241 |
+
auxiliary_channels (`int`, *optional*, defaults to 256):
|
242 |
+
Number of channels to use in the auxiliary head.
|
243 |
+
auxiliary_num_convs (`int`, *optional*, defaults to 1):
|
244 |
+
Number of convolutional layers to use in the auxiliary head.
|
245 |
+
auxiliary_concat_input (`bool`, *optional*, defaults to `False`):
|
246 |
+
Whether to concatenate the output of the auxiliary head with the input before the classification layer.
|
247 |
+
semantic_loss_ignore_index (`int`, *optional*, defaults to 255):
|
248 |
+
The index that is ignored by the loss function of the semantic segmentation model.
|
249 |
+
|
250 |
+
Example:
|
251 |
+
|
252 |
+
```python
|
253 |
+
>>> from transformers import BeitModel, BeitConfig
|
254 |
+
|
255 |
+
>>> # Initializing a BEiT beit-base-patch16-224-in22k style configuration
|
256 |
+
>>> configuration = BeitConfig()
|
257 |
+
|
258 |
+
>>> # Initializing a model from the beit-base-patch16-224-in22k style configuration
|
259 |
+
>>> model = BeitModel(configuration)
|
260 |
+
|
261 |
+
>>> # Accessing the model configuration
|
262 |
+
>>> configuration = model.config
|
263 |
+
```"""
|
264 |
+
model_type = "beit"
|
265 |
+
|
266 |
+
def __init__(
|
267 |
+
self,
|
268 |
+
vocab_size=8192,
|
269 |
+
hidden_size=768,
|
270 |
+
num_hidden_layers=12,
|
271 |
+
num_attention_heads=12,
|
272 |
+
intermediate_size=3072,
|
273 |
+
hidden_act="gelu",
|
274 |
+
hidden_dropout_prob=0.0,
|
275 |
+
attention_probs_dropout_prob=0.0,
|
276 |
+
initializer_range=0.02,
|
277 |
+
layer_norm_eps=1e-12,
|
278 |
+
is_encoder_decoder=False,
|
279 |
+
image_size=224,
|
280 |
+
patch_size=16,
|
281 |
+
num_channels=3,
|
282 |
+
use_mask_token=False,
|
283 |
+
use_absolute_position_embeddings=False,
|
284 |
+
use_relative_position_bias=False,
|
285 |
+
use_shared_relative_position_bias=False,
|
286 |
+
layer_scale_init_value=0.1,
|
287 |
+
drop_path_rate=0.1,
|
288 |
+
use_mean_pooling=True,
|
289 |
+
out_indices=[3, 5, 7, 11],
|
290 |
+
pool_scales=[1, 2, 3, 6],
|
291 |
+
use_auxiliary_head=True,
|
292 |
+
auxiliary_loss_weight=0.4,
|
293 |
+
auxiliary_channels=256,
|
294 |
+
auxiliary_num_convs=1,
|
295 |
+
auxiliary_concat_input=False,
|
296 |
+
semantic_loss_ignore_index=255,
|
297 |
+
token_keep_rate=1,
|
298 |
+
token_keep_strategy='cls_attn',
|
299 |
+
token_drop_loc=[3, 6, 9],
|
300 |
+
sparse_random_attn=None,
|
301 |
+
sparse_local_attn=1,
|
302 |
+
attn_block_size=1,
|
303 |
+
num_cls_tokens=1,
|
304 |
+
token_3d_order='none',
|
305 |
+
**kwargs
|
306 |
+
):
|
307 |
+
super().__init__(**kwargs)
|
308 |
+
|
309 |
+
self.vocab_size = vocab_size
|
310 |
+
self.hidden_size = hidden_size
|
311 |
+
self.num_hidden_layers = num_hidden_layers
|
312 |
+
self.num_attention_heads = num_attention_heads
|
313 |
+
self.intermediate_size = intermediate_size
|
314 |
+
self.hidden_act = hidden_act
|
315 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
316 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
317 |
+
self.initializer_range = initializer_range
|
318 |
+
self.layer_norm_eps = layer_norm_eps
|
319 |
+
|
320 |
+
self.image_size = image_size
|
321 |
+
self.patch_size = patch_size
|
322 |
+
self.num_channels = num_channels
|
323 |
+
self.use_mask_token = use_mask_token
|
324 |
+
self.use_absolute_position_embeddings = use_absolute_position_embeddings
|
325 |
+
self.use_relative_position_bias = use_relative_position_bias
|
326 |
+
self.use_shared_relative_position_bias = use_shared_relative_position_bias
|
327 |
+
self.layer_scale_init_value = layer_scale_init_value
|
328 |
+
self.drop_path_rate = drop_path_rate
|
329 |
+
self.use_mean_pooling = use_mean_pooling
|
330 |
+
# decode head attributes (semantic segmentation)
|
331 |
+
self.out_indices = out_indices
|
332 |
+
self.pool_scales = pool_scales
|
333 |
+
# auxiliary head attributes (semantic segmentation)
|
334 |
+
self.use_auxiliary_head = use_auxiliary_head
|
335 |
+
self.auxiliary_loss_weight = auxiliary_loss_weight
|
336 |
+
self.auxiliary_channels = auxiliary_channels
|
337 |
+
self.auxiliary_num_convs = auxiliary_num_convs
|
338 |
+
self.auxiliary_concat_input = auxiliary_concat_input
|
339 |
+
self.semantic_loss_ignore_index = semantic_loss_ignore_index
|
340 |
+
|
341 |
+
# node sparsification
|
342 |
+
self.token_keep_rate = token_keep_rate
|
343 |
+
self.token_keep_strategy = token_keep_strategy
|
344 |
+
self.token_drop_loc = token_drop_loc
|
345 |
+
# edge sparsification
|
346 |
+
self.sparse_random_attn = sparse_random_attn
|
347 |
+
self.sparse_local_attn = sparse_local_attn
|
348 |
+
self.attn_block_size = attn_block_size
|
349 |
+
self.num_cls_tokens = num_cls_tokens
|
350 |
+
# token order
|
351 |
+
self.token_3d_order = token_3d_order
|
svitt/sparse_xbeit.py
ADDED
@@ -0,0 +1,1585 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 Google AI, Ross Wightman, The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch BEiT model. """
|
16 |
+
|
17 |
+
|
18 |
+
import collections.abc
|
19 |
+
import math
|
20 |
+
import numpy as np
|
21 |
+
from dataclasses import dataclass
|
22 |
+
from typing import Optional, Tuple
|
23 |
+
import zCurve
|
24 |
+
import hilbert
|
25 |
+
|
26 |
+
import torch
|
27 |
+
import torch.utils.checkpoint
|
28 |
+
from torch import nn
|
29 |
+
from torch.nn import CrossEntropyLoss, MSELoss
|
30 |
+
from einops import rearrange, repeat
|
31 |
+
|
32 |
+
from transformers.activations import ACT2FN
|
33 |
+
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
|
34 |
+
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, MaskedLMOutput, SequenceClassifierOutput
|
35 |
+
from transformers.modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
|
36 |
+
from svitt.sparse_config import BeitConfig
|
37 |
+
|
38 |
+
|
39 |
+
_CONFIG_FOR_DOC = "BeitConfig"
|
40 |
+
_CHECKPOINT_FOR_DOC = "microsoft/beit-base-patch16-224"
|
41 |
+
|
42 |
+
BEIT_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
43 |
+
"microsoft/beit-base-patch16-224",
|
44 |
+
# See all BEiT models at https://huggingface.co/models?filter=beit
|
45 |
+
]
|
46 |
+
|
47 |
+
|
48 |
+
@dataclass
|
49 |
+
class BeitModelOutputWithPooling(BaseModelOutputWithPooling):
|
50 |
+
"""
|
51 |
+
Class for outputs of :class:`~transformers.BeitModel`.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
|
55 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
56 |
+
pooler_output (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, hidden_size)`):
|
57 |
+
Average of the last layer hidden states of the patch tokens (excluding the `[CLS]` token) if
|
58 |
+
`config.use_mean_pooling` is set to True. If set to False, then the final hidden state of the `[CLS]` token
|
59 |
+
will be returned.
|
60 |
+
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
61 |
+
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
62 |
+
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
63 |
+
|
64 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
65 |
+
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
66 |
+
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
|
67 |
+
sequence_length, sequence_length)`.
|
68 |
+
|
69 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
70 |
+
heads.
|
71 |
+
"""
|
72 |
+
token_idx: Optional[Tuple[torch.LongTensor]] = None
|
73 |
+
|
74 |
+
|
75 |
+
@dataclass
|
76 |
+
class BeitModelOutput(BaseModelOutput):
|
77 |
+
token_idx: Optional[Tuple[torch.LongTensor]] = None
|
78 |
+
|
79 |
+
|
80 |
+
# Inspired by
|
81 |
+
# https://github.com/rwightman/pytorch-image-models/blob/b9bd960a032c75ca6b808ddeed76bee5f3ed4972/timm/models/layers/helpers.py
|
82 |
+
# From PyTorch internals
|
83 |
+
def to_2tuple(x):
|
84 |
+
if isinstance(x, collections.abc.Iterable):
|
85 |
+
return x
|
86 |
+
return (x, x)
|
87 |
+
|
88 |
+
|
89 |
+
# Based on https://github.com/rwightman/pytorch-image-models/blob/a2727c1bf78ba0d7b5727f5f95e37fb7f8866b1f/timm/models/layers/drop.py
|
90 |
+
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
|
91 |
+
"""
|
92 |
+
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
93 |
+
|
94 |
+
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
|
95 |
+
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
96 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
|
97 |
+
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
|
98 |
+
argument.
|
99 |
+
"""
|
100 |
+
if drop_prob == 0.0 or not training:
|
101 |
+
return x
|
102 |
+
keep_prob = 1 - drop_prob
|
103 |
+
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
104 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
|
105 |
+
random_tensor.floor_() # binarize
|
106 |
+
output = x.div(keep_prob) * random_tensor
|
107 |
+
return output
|
108 |
+
|
109 |
+
|
110 |
+
class DropPath(nn.Module):
|
111 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
112 |
+
|
113 |
+
def __init__(self, drop_prob=None):
|
114 |
+
super().__init__()
|
115 |
+
self.drop_prob = drop_prob
|
116 |
+
|
117 |
+
def forward(self, x):
|
118 |
+
return drop_path(x, self.drop_prob, self.training)
|
119 |
+
|
120 |
+
def extra_repr(self) -> str:
|
121 |
+
return "p={}".format(self.drop_prob)
|
122 |
+
|
123 |
+
|
124 |
+
# Based on timm implementation, which can be found here:
|
125 |
+
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
|
126 |
+
class BeitEmbeddings(nn.Module):
|
127 |
+
"""
|
128 |
+
Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
|
129 |
+
|
130 |
+
"""
|
131 |
+
|
132 |
+
def __init__(self, config):
|
133 |
+
super().__init__()
|
134 |
+
|
135 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
136 |
+
if config.use_mask_token:
|
137 |
+
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
138 |
+
else:
|
139 |
+
self.mask_token = None
|
140 |
+
self.patch_embeddings = PatchEmbeddings(
|
141 |
+
image_size=config.image_size,
|
142 |
+
patch_size=config.patch_size,
|
143 |
+
num_channels=config.num_channels,
|
144 |
+
embed_dim=config.hidden_size,
|
145 |
+
)
|
146 |
+
num_patches = self.patch_embeddings.num_patches
|
147 |
+
if config.use_absolute_position_embeddings:
|
148 |
+
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size))
|
149 |
+
else:
|
150 |
+
self.position_embeddings = None
|
151 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
152 |
+
|
153 |
+
def forward(self, pixel_values, bool_masked_pos=None):
|
154 |
+
|
155 |
+
if pixel_values.ndim == 5: # video input=
|
156 |
+
embeddings = self.patch_embeddings(pixel_values.flatten(0, 1))
|
157 |
+
embeddings = rearrange(embeddings, '(b m) n d -> b (m n) d', m=pixel_values.shape[1])
|
158 |
+
else: # image input
|
159 |
+
embeddings = self.patch_embeddings(pixel_values)
|
160 |
+
|
161 |
+
batch_size, seq_len, _ = embeddings.size()
|
162 |
+
|
163 |
+
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
|
164 |
+
if bool_masked_pos is not None:
|
165 |
+
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
|
166 |
+
# replace the masked visual tokens by mask_tokens
|
167 |
+
w = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
|
168 |
+
embeddings = embeddings * (1 - w) + mask_tokens * w
|
169 |
+
|
170 |
+
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
|
171 |
+
if self.position_embeddings is not None:
|
172 |
+
embeddings = embeddings + self.position_embeddings
|
173 |
+
embeddings = self.dropout(embeddings)
|
174 |
+
|
175 |
+
return embeddings
|
176 |
+
|
177 |
+
|
178 |
+
# Based on timm implementation, which can be found here:
|
179 |
+
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
|
180 |
+
class PatchEmbeddings(nn.Module):
|
181 |
+
"""
|
182 |
+
Image to Patch Embedding.
|
183 |
+
"""
|
184 |
+
|
185 |
+
def __init__(self, image_size=224, patch_size=16, num_channels=3, embed_dim=768):
|
186 |
+
super().__init__()
|
187 |
+
image_size = to_2tuple(image_size)
|
188 |
+
patch_size = to_2tuple(patch_size)
|
189 |
+
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
190 |
+
patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
|
191 |
+
self.image_size = image_size
|
192 |
+
self.patch_size = patch_size
|
193 |
+
self.num_patches = num_patches
|
194 |
+
self.patch_shape = patch_shape
|
195 |
+
|
196 |
+
self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
|
197 |
+
|
198 |
+
def forward(self, pixel_values):
|
199 |
+
batch_size, num_channels, height, width = pixel_values.shape
|
200 |
+
# FIXME look at relaxing size constraints
|
201 |
+
if height != self.image_size[0] or width != self.image_size[1]:
|
202 |
+
raise ValueError(
|
203 |
+
f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
|
204 |
+
)
|
205 |
+
x = self.projection(pixel_values).flatten(2).transpose(1, 2)
|
206 |
+
|
207 |
+
return x
|
208 |
+
|
209 |
+
|
210 |
+
class BeitSelfAttention(nn.Module):
|
211 |
+
def __init__(self, config, window_size=None):
|
212 |
+
super().__init__()
|
213 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
214 |
+
raise ValueError(
|
215 |
+
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
|
216 |
+
f"heads {config.num_attention_heads}."
|
217 |
+
)
|
218 |
+
|
219 |
+
self.num_attention_heads = config.num_attention_heads
|
220 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
221 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
222 |
+
|
223 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
224 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
|
225 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
226 |
+
|
227 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
228 |
+
|
229 |
+
# sparse params
|
230 |
+
self.random_attn = config.sparse_random_attn
|
231 |
+
self.local_attn = config.sparse_local_attn
|
232 |
+
self.block_size = config.attn_block_size
|
233 |
+
self.num_cls_tokens = config.num_cls_tokens
|
234 |
+
if self.local_attn is not None and self.random_attn is not None:
|
235 |
+
self.num_kv_blocks = self.local_attn + self.random_attn
|
236 |
+
|
237 |
+
if window_size:
|
238 |
+
self.relative_position_bias = BeitRelativePositionBias3D(config, window_size=window_size)
|
239 |
+
else:
|
240 |
+
self.relative_position_bias = None
|
241 |
+
|
242 |
+
def split_heads(self, x):
|
243 |
+
return rearrange(x, 'b n (h d) -> b h n d', h=self.num_attention_heads)
|
244 |
+
|
245 |
+
def join_heads(self, x):
|
246 |
+
return rearrange(x, 'b h n d -> b n (h d)')
|
247 |
+
|
248 |
+
def blockify(self, x):
|
249 |
+
assert x.dim() == 4, f"Unsupported input shape {x.shape}"
|
250 |
+
seq_len = x.shape[2]
|
251 |
+
if seq_len % self.block_size > 0: # seq_len not divisible by block_size, zero pad
|
252 |
+
pad_len = self.block_size - seq_len % self.block_size
|
253 |
+
x = nn.functional.pad(x, (0, 0, 0, pad_len))
|
254 |
+
else:
|
255 |
+
pad_len = 0
|
256 |
+
x = rearrange(x, 'b h (m n) d -> b h m n d', n=self.block_size)
|
257 |
+
return x, pad_len
|
258 |
+
|
259 |
+
def dense_attention(self, q, k, v, head_mask=None, relative_position_bias=None, q_idx=None, k_idx=None):
|
260 |
+
# q, k, v: (bsz, num_heads, seq_len, dims)
|
261 |
+
assert k.shape[2] == v.shape[2], "Key and value shapes mismatch"
|
262 |
+
sim = torch.einsum('b h i d, b h j d -> b h i j', q, k)
|
263 |
+
sim = sim / math.sqrt(self.attention_head_size)
|
264 |
+
|
265 |
+
# Add relative position bias if present.
|
266 |
+
if self.relative_position_bias is not None:
|
267 |
+
if q_idx is not None and q_idx.ndim == 2:
|
268 |
+
assert k_idx is not None and len(q_idx) == len(k_idx)
|
269 |
+
bias = torch.stack([
|
270 |
+
self.relative_position_bias(from_idx=q_idx_, to_idx=k_idx_)
|
271 |
+
for q_idx_, k_idx_ in zip(q_idx, k_idx)
|
272 |
+
])
|
273 |
+
else:
|
274 |
+
bias = self.relative_position_bias(from_idx=q_idx, to_idx=k_idx).unsqueeze(0)
|
275 |
+
sim = sim + bias
|
276 |
+
|
277 |
+
# Add shared relative position bias if provided.
|
278 |
+
if relative_position_bias is not None:
|
279 |
+
sim = sim + relative_position_bias
|
280 |
+
|
281 |
+
# Normalize the attention scores to probabilities.
|
282 |
+
attn = sim.softmax(dim=-1)
|
283 |
+
attn = self.dropout(attn)
|
284 |
+
if head_mask is not None:
|
285 |
+
attn = attn * head_mask
|
286 |
+
|
287 |
+
out = torch.einsum('b h i j, b h j d -> b h i d', attn, v)
|
288 |
+
return out, attn
|
289 |
+
|
290 |
+
def _sparse_attn_relative_position_bias(self, q_idx, pad_q, attn_idx, group_len):
|
291 |
+
q_idx_blk = nn.functional.pad(q_idx, (0, pad_q)).view(-1, self.block_size)
|
292 |
+
attn_idx_flt = rearrange(q_idx_blk[attn_idx], 'm n j -> m (n j)') # (seq_len, num_kv_blocks * group_len)
|
293 |
+
cls_idx = torch.arange(self.num_cls_tokens, device=q_idx.device)
|
294 |
+
cls_idx = repeat(cls_idx, 'n -> m n', m=len(attn_idx_flt))
|
295 |
+
attn_idx_flt = torch.cat((cls_idx, attn_idx_flt), dim=1)
|
296 |
+
attn_idx_flt = repeat(attn_idx_flt, 'm n -> (m i) n', i=group_len)
|
297 |
+
if pad_q > 0:
|
298 |
+
attn_idx_flt = attn_idx_flt[:-pad_q]
|
299 |
+
bias_flt = self.relative_position_bias(from_idx=q_idx, to_idx=attn_idx_flt)
|
300 |
+
if pad_q > 0:
|
301 |
+
bias_flt = nn.functional.pad(bias_flt, (0, 0, 0, pad_q))
|
302 |
+
return rearrange(bias_flt, 'h (m i) n -> h m i n', i=group_len) # num_heads, seq_len, group_len, (num_kv_blocks * group_len + num_cls_tokens)
|
303 |
+
|
304 |
+
def sparse_attention(self, q, k, v, head_mask=None, relative_position_bias=None, q_idx=None, mimic_full=False):
|
305 |
+
assert self.local_attn == 0 or self.local_attn % 2 == 1, "Even local window size not supported"
|
306 |
+
assert k.shape[2] == v.shape[2], "Key and value shapes mismatch"
|
307 |
+
|
308 |
+
|
309 |
+
if not mimic_full:
|
310 |
+
cls_k, k = k[..., :self.num_cls_tokens, :], k[..., self.num_cls_tokens:, :] # cls_k: (bsz, num_heads, num_cls_tokens, dims)
|
311 |
+
cls_v, v = v[..., :self.num_cls_tokens, :], v[..., self.num_cls_tokens:, :]
|
312 |
+
|
313 |
+
# pad token sequence to multiples of block_size
|
314 |
+
if mimic_full:
|
315 |
+
bsz, num_heads, seq_len, dims = q.shape
|
316 |
+
else:
|
317 |
+
q, pad_q = self.blockify(q) # q: (bsz, num_heads, seq_len, group_len, dims)
|
318 |
+
k, pad_k = self.blockify(k)
|
319 |
+
v, pad_v = self.blockify(v)
|
320 |
+
bsz, num_heads, seq_len, group_len, dims = q.shape
|
321 |
+
|
322 |
+
# global attention
|
323 |
+
cls_sim = torch.einsum('b h n i d, b h j d -> b h n i j', q, cls_k) # (bsz, num_heads, seq_len, group_len, num_cls_tokens)
|
324 |
+
|
325 |
+
if mimic_full:
|
326 |
+
sim = torch.einsum('b h i d, b h j d -> b h i j', q, k)
|
327 |
+
sim = sim / math.sqrt(self.attention_head_size)
|
328 |
+
sim = sim + self.relative_position_bias(from_idx=q_idx).unsqueeze(0)
|
329 |
+
|
330 |
+
else:
|
331 |
+
# initialize empty sim matrix
|
332 |
+
sim = torch.empty((bsz, num_heads, seq_len, self.num_kv_blocks, group_len, group_len), device=q.device)
|
333 |
+
attn_idx = torch.zeros((seq_len, self.num_kv_blocks), dtype=torch.int64, device=q.device)
|
334 |
+
|
335 |
+
# local window attention
|
336 |
+
cnt = 0
|
337 |
+
if self.local_attn > 0:
|
338 |
+
num_rolls = self.local_attn // 2
|
339 |
+
for r in range(-num_rolls, num_rolls + 1):
|
340 |
+
sim[..., cnt, :, :] = torch.einsum('b h n i d, b h n j d -> b h n i j', q, k.roll(-r, dims=2))
|
341 |
+
attn_idx[:, cnt] = torch.arange(seq_len, device=q.device).roll(r)
|
342 |
+
cnt += 1
|
343 |
+
|
344 |
+
# random attention
|
345 |
+
if self.random_attn > 0:
|
346 |
+
# generate random attention pattern
|
347 |
+
rand = torch.rand((seq_len, seq_len), device=q.device)
|
348 |
+
if self.local_attn > 0:
|
349 |
+
# avoid overlap with local attention
|
350 |
+
for r in range(-num_rolls, num_rolls + 1):
|
351 |
+
tgt_idx = list(i % seq_len for i in range(r, seq_len + r))
|
352 |
+
rand[range(seq_len), tgt_idx] = 0
|
353 |
+
_, idx = rand.topk(self.random_attn, dim=-1) # seq_len, random_attn
|
354 |
+
idx, _ = torch.sort(idx, dim=1)
|
355 |
+
attn_idx[:, cnt:] = idx
|
356 |
+
|
357 |
+
idx_ = repeat(idx, 'n m -> b h n m i d', b=bsz, h=num_heads, i=group_len, d=dims)
|
358 |
+
|
359 |
+
for r in range(self.random_attn):
|
360 |
+
sim[..., cnt, :, :] = torch.einsum('b h n i d, b h n j d -> b h n i j', q, k.gather(2, idx_[..., r, :, :]))
|
361 |
+
cnt += 1
|
362 |
+
|
363 |
+
sim = rearrange(sim, 'b h m n i j -> b h m i (n j)') # (bsz, num_heads, seq_len, group_len, num_kv_blocks * group_len)
|
364 |
+
sim = torch.cat((cls_sim, sim), -1)
|
365 |
+
sim = sim / math.sqrt(self.attention_head_size)
|
366 |
+
|
367 |
+
# Add relative position bias if present.
|
368 |
+
# NOTE: we assume q and k (excluding cls) use same token indexing, for relative position embedding
|
369 |
+
if self.relative_position_bias is not None:
|
370 |
+
assert q_idx is not None, "query index required for relative position bias"
|
371 |
+
if q_idx.ndim == 2:
|
372 |
+
# different indices for each sample
|
373 |
+
bias = torch.stack([
|
374 |
+
self._sparse_attn_relative_position_bias(q_idx_, pad_q, attn_idx, group_len)
|
375 |
+
for q_idx_ in q_idx
|
376 |
+
])
|
377 |
+
else:
|
378 |
+
bias = self._sparse_attn_relative_position_bias(q_idx, pad_q, attn_idx, group_len).unsqueeze(0)
|
379 |
+
sim = sim + bias
|
380 |
+
|
381 |
+
# Add shared relative position bias if provided.
|
382 |
+
if relative_position_bias is not None:
|
383 |
+
raise NotImplementedError
|
384 |
+
sim = sim + relative_position_bias
|
385 |
+
|
386 |
+
attn = sim.softmax(dim=-1)
|
387 |
+
attn = self.dropout(attn)
|
388 |
+
if head_mask is not None:
|
389 |
+
attn = attn * head_mask
|
390 |
+
|
391 |
+
# block attention
|
392 |
+
if mimic_full:
|
393 |
+
out = torch.einsum('b h i j, b h j d -> b h i d', attn, v)
|
394 |
+
|
395 |
+
else:
|
396 |
+
out = torch.empty((bsz, num_heads, seq_len, group_len, dims), device=q.device)
|
397 |
+
for m in range(seq_len):
|
398 |
+
v_row = torch.index_select(v, 2, attn_idx[m])
|
399 |
+
v_row = rearrange(v_row, 'b h n j d -> b h (n j) d') # (bsz, num_heads, num_kv_blocks * group_len, dims)
|
400 |
+
v_row = torch.cat((cls_v, v_row), 2)
|
401 |
+
out[..., m, :, :] = torch.einsum('b h i j, b h j d -> b h i d', attn[..., m, :, :], v_row)
|
402 |
+
out = rearrange(out, 'b h n i d -> b h (n i) d')
|
403 |
+
if pad_q > 0:
|
404 |
+
out = out[..., :-pad_q, :]
|
405 |
+
|
406 |
+
return out, attn
|
407 |
+
|
408 |
+
def forward(self, hidden_states, head_mask=None, output_attentions=False, relative_position_bias=None, token_idx=None):
|
409 |
+
# compute qkv
|
410 |
+
q = self.split_heads(self.query(hidden_states))
|
411 |
+
k = self.split_heads(self.key(hidden_states))
|
412 |
+
v = self.split_heads(self.value(hidden_states))
|
413 |
+
|
414 |
+
# combine local token_idx with cls tokens
|
415 |
+
# NOTE: assume token_idx starts from 0
|
416 |
+
cls_q_idx = torch.arange(self.num_cls_tokens, device=q.device)
|
417 |
+
if token_idx is not None:
|
418 |
+
if token_idx.ndim == 2:
|
419 |
+
cls_q_idx = repeat(cls_q_idx, 'n -> b n', b=q.shape[0])
|
420 |
+
all_token_idx = torch.cat((cls_q_idx, token_idx + self.num_cls_tokens), dim=-1)
|
421 |
+
else:
|
422 |
+
all_token_idx = None
|
423 |
+
|
424 |
+
if self.random_attn is None:
|
425 |
+
outputs, attention_probs = self.dense_attention(q, k, v, head_mask=head_mask,
|
426 |
+
relative_position_bias=relative_position_bias,
|
427 |
+
q_idx=all_token_idx,
|
428 |
+
k_idx=all_token_idx)
|
429 |
+
cls_attention_probs = attention_probs[..., :self.num_cls_tokens, :]
|
430 |
+
|
431 |
+
else:
|
432 |
+
cls_q, q = q[..., :self.num_cls_tokens, :], q[..., self.num_cls_tokens:, :]
|
433 |
+
|
434 |
+
# dense global attention (num_cls_tokens, seq_len)
|
435 |
+
cls_outputs, cls_attention_probs = self.dense_attention(cls_q, k, v, head_mask=head_mask,
|
436 |
+
relative_position_bias=relative_position_bias,
|
437 |
+
q_idx=cls_q_idx,
|
438 |
+
k_idx=all_token_idx)
|
439 |
+
|
440 |
+
# sparse local attention (local_seq_len, seq_len)
|
441 |
+
if token_idx is None:
|
442 |
+
token_idx = torch.arange(q.shape[-2], device=q.device)
|
443 |
+
outputs, attention_probs = self.sparse_attention(q, k, v, head_mask=head_mask,
|
444 |
+
relative_position_bias=relative_position_bias,
|
445 |
+
q_idx=token_idx + self.num_cls_tokens)
|
446 |
+
|
447 |
+
outputs = torch.cat((cls_outputs, outputs), dim=2)
|
448 |
+
|
449 |
+
outputs = self.join_heads(outputs)
|
450 |
+
|
451 |
+
outputs = (outputs, cls_attention_probs) if output_attentions else (outputs,)
|
452 |
+
|
453 |
+
return outputs
|
454 |
+
|
455 |
+
|
456 |
+
class BeitSelfOutput(nn.Module):
|
457 |
+
"""
|
458 |
+
The residual connection is defined in BeitLayer instead of here (as is the case with other models), due to the
|
459 |
+
layernorm applied before each block.
|
460 |
+
"""
|
461 |
+
|
462 |
+
def __init__(self, config):
|
463 |
+
super().__init__()
|
464 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
465 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
466 |
+
|
467 |
+
def forward(self, hidden_states, input_tensor, gamma=None):
|
468 |
+
hidden_states = self.dense(hidden_states)
|
469 |
+
hidden_states = self.dropout(hidden_states)
|
470 |
+
|
471 |
+
return hidden_states
|
472 |
+
|
473 |
+
|
474 |
+
class BeitAttention(nn.Module):
|
475 |
+
def __init__(self, config, window_size=None):
|
476 |
+
super().__init__()
|
477 |
+
self.attention = BeitSelfAttention(config, window_size=window_size)
|
478 |
+
self.output = BeitSelfOutput(config)
|
479 |
+
self.pruned_heads = set()
|
480 |
+
|
481 |
+
def prune_heads(self, heads):
|
482 |
+
if len(heads) == 0:
|
483 |
+
return
|
484 |
+
heads, index = find_pruneable_heads_and_indices(
|
485 |
+
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
|
486 |
+
)
|
487 |
+
|
488 |
+
# Prune linear layers
|
489 |
+
self.attention.query = prune_linear_layer(self.attention.query, index)
|
490 |
+
self.attention.key = prune_linear_layer(self.attention.key, index)
|
491 |
+
self.attention.value = prune_linear_layer(self.attention.value, index)
|
492 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
493 |
+
|
494 |
+
# Update hyper params and store pruned heads
|
495 |
+
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
|
496 |
+
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
|
497 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
498 |
+
|
499 |
+
def forward(self, hidden_states, head_mask=None, output_attentions=False, relative_position_bias=None, token_idx=None):
|
500 |
+
self_outputs = self.attention(hidden_states, head_mask, output_attentions, relative_position_bias, token_idx)
|
501 |
+
|
502 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
503 |
+
|
504 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
505 |
+
return outputs
|
506 |
+
|
507 |
+
|
508 |
+
class BeitIntermediate(nn.Module):
|
509 |
+
def __init__(self, config):
|
510 |
+
super().__init__()
|
511 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
512 |
+
if isinstance(config.hidden_act, str):
|
513 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
514 |
+
else:
|
515 |
+
self.intermediate_act_fn = config.hidden_act
|
516 |
+
|
517 |
+
def forward(self, hidden_states):
|
518 |
+
hidden_states = self.dense(hidden_states)
|
519 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
520 |
+
|
521 |
+
return hidden_states
|
522 |
+
|
523 |
+
|
524 |
+
class BeitOutput(nn.Module):
|
525 |
+
def __init__(self, config):
|
526 |
+
super().__init__()
|
527 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
528 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
529 |
+
|
530 |
+
def forward(self, hidden_states):
|
531 |
+
hidden_states = self.dense(hidden_states)
|
532 |
+
hidden_states = self.dropout(hidden_states)
|
533 |
+
|
534 |
+
return hidden_states
|
535 |
+
|
536 |
+
|
537 |
+
class BeitLayer(nn.Module):
|
538 |
+
"""This corresponds to the Block class in the timm implementation."""
|
539 |
+
|
540 |
+
def __init__(self, config, window_size=None, drop_path_rate=0.0,
|
541 |
+
token_keep_rate=1.0):
|
542 |
+
super().__init__()
|
543 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
544 |
+
self.seq_len_dim = 1
|
545 |
+
self.attention = BeitAttention(config, window_size=window_size)
|
546 |
+
self.intermediate = BeitIntermediate(config)
|
547 |
+
self.output = BeitOutput(config)
|
548 |
+
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
549 |
+
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
|
550 |
+
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
551 |
+
|
552 |
+
# sparse params
|
553 |
+
self.token_keep_rate = token_keep_rate
|
554 |
+
self.token_keep_strategy = config.token_keep_strategy
|
555 |
+
self.num_cls_tokens = config.num_cls_tokens
|
556 |
+
|
557 |
+
init_values = config.layer_scale_init_value
|
558 |
+
if init_values > 0:
|
559 |
+
self.lambda_1 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True)
|
560 |
+
self.lambda_2 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True)
|
561 |
+
else:
|
562 |
+
self.lambda_1, self.lambda_2 = None, None
|
563 |
+
|
564 |
+
def sparsify(self, x, attn):
|
565 |
+
x_cls, x_ = x[:, :self.num_cls_tokens], x[:, self.num_cls_tokens:]
|
566 |
+
assert 0 < self.token_keep_rate <= 1, "Expected keep rate in range (0, 1]"
|
567 |
+
left_tokens = math.ceil(self.token_keep_rate * x_.size(1))
|
568 |
+
|
569 |
+
if self.token_keep_strategy == 'cls_attn':
|
570 |
+
if len(attn.shape) == 4:
|
571 |
+
attn = attn.mean(1) # pool over attention heads
|
572 |
+
cls_attn = attn[:, 0, self.num_cls_tokens:]
|
573 |
+
_, idx = torch.topk(cls_attn, left_tokens, dim=1) # [B, left_tokens]
|
574 |
+
|
575 |
+
elif self.token_keep_strategy == 'random':
|
576 |
+
rand = torch.rand(x_.shape[:2], device=x_.device)
|
577 |
+
_, idx = torch.topk(rand, left_tokens, dim=1) # [B, left_tokens]
|
578 |
+
|
579 |
+
else:
|
580 |
+
raise NotImplementedError(f"Sparse strategy {self.token_keep_strategy} is not implemented")
|
581 |
+
|
582 |
+
idx, _ = torch.sort(idx, dim=1)
|
583 |
+
index = idx.unsqueeze(-1).expand(-1, -1, x_.size(-1)) # [B, left_tokens, C]
|
584 |
+
outputs = torch.cat((x_cls, x_.gather(1, index)), dim=1).contiguous()
|
585 |
+
return outputs, idx
|
586 |
+
|
587 |
+
def forward(self, hidden_states, head_mask=None, output_attentions=False, relative_position_bias=None, token_idx=None):
|
588 |
+
self_attention_outputs = self.attention(
|
589 |
+
self.layernorm_before(hidden_states), # in BEiT, layernorm is applied before self-attention
|
590 |
+
head_mask,
|
591 |
+
output_attentions=(output_attentions or self.token_keep_rate < 1),
|
592 |
+
relative_position_bias=relative_position_bias,
|
593 |
+
token_idx=token_idx
|
594 |
+
)
|
595 |
+
attention_output = self_attention_outputs[0]
|
596 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
597 |
+
|
598 |
+
# apply lambda_1 if present
|
599 |
+
if self.lambda_1 is not None:
|
600 |
+
attention_output = self.lambda_1 * attention_output
|
601 |
+
|
602 |
+
# first residual connection
|
603 |
+
hidden_states = self.drop_path(attention_output) + hidden_states
|
604 |
+
|
605 |
+
# in BEiT, layernorm is also applied after self-attention
|
606 |
+
layer_output = self.layernorm_after(hidden_states)
|
607 |
+
|
608 |
+
layer_output = self.intermediate(layer_output)
|
609 |
+
layer_output = self.output(layer_output)
|
610 |
+
|
611 |
+
if self.lambda_2 is not None:
|
612 |
+
layer_output = self.lambda_2 * layer_output
|
613 |
+
|
614 |
+
# second residual connection
|
615 |
+
layer_output = self.drop_path(layer_output) + hidden_states
|
616 |
+
|
617 |
+
# node sparsification
|
618 |
+
if self.token_keep_rate < 1:
|
619 |
+
layer_output, token_keep_idx = self.sparsify(layer_output, outputs[0])
|
620 |
+
if token_idx is not None:
|
621 |
+
if token_idx.ndim == 1:
|
622 |
+
token_idx = repeat(token_idx, 'n -> b n', b=len(token_keep_idx))
|
623 |
+
token_keep_idx = token_idx.gather(1, token_keep_idx)
|
624 |
+
outputs = outputs + (token_keep_idx,)
|
625 |
+
|
626 |
+
outputs = (layer_output,) + outputs
|
627 |
+
|
628 |
+
return outputs
|
629 |
+
|
630 |
+
|
631 |
+
class BeitRelativePositionBias(nn.Module):
|
632 |
+
def __init__(self, config, window_size):
|
633 |
+
super().__init__()
|
634 |
+
self.window_size = window_size
|
635 |
+
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
636 |
+
self.relative_position_bias_table = nn.Parameter(
|
637 |
+
torch.zeros(self.num_relative_distance, config.num_attention_heads)
|
638 |
+
) # 2*Wh-1 * 2*Ww-1, nH
|
639 |
+
# cls to token & token 2 cls & cls to cls
|
640 |
+
|
641 |
+
# get pair-wise relative position index for each token inside the window
|
642 |
+
coords_h = torch.arange(window_size[0])
|
643 |
+
coords_w = torch.arange(window_size[1])
|
644 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
645 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
646 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
647 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
648 |
+
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
649 |
+
relative_coords[:, :, 1] += window_size[1] - 1
|
650 |
+
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
651 |
+
relative_position_index = torch.zeros(
|
652 |
+
size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype
|
653 |
+
)
|
654 |
+
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
655 |
+
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
656 |
+
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
657 |
+
relative_position_index[0, 0] = self.num_relative_distance - 1
|
658 |
+
|
659 |
+
self.register_buffer("relative_position_index", relative_position_index, persistent=False)
|
660 |
+
|
661 |
+
def forward(self):
|
662 |
+
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
663 |
+
self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1
|
664 |
+
) # Wh*Ww,Wh*Ww,nH
|
665 |
+
|
666 |
+
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
667 |
+
|
668 |
+
|
669 |
+
class BeitRelativePositionBias3D(nn.Module):
|
670 |
+
"""
|
671 |
+
3D relative position bias
|
672 |
+
"""
|
673 |
+
def __init__(self, config, window_size, num_cls_tokens=1):
|
674 |
+
super().__init__()
|
675 |
+
self.window_size = window_size
|
676 |
+
self.num_cls_tokens = num_cls_tokens
|
677 |
+
|
678 |
+
relative_size = [w * 2 - 1 for w in window_size]
|
679 |
+
self.num_relative_distance = np.prod(relative_size) + 2 * num_cls_tokens + num_cls_tokens ** 2
|
680 |
+
|
681 |
+
self.relative_position_bias_table = nn.Parameter(
|
682 |
+
torch.zeros(self.num_relative_distance, config.num_attention_heads)
|
683 |
+
)
|
684 |
+
|
685 |
+
# get pair-wise relative position index for each token inside the window
|
686 |
+
coords_range = [torch.arange(w) for w in window_size]
|
687 |
+
coords_flatten = torch.stack(torch.meshgrid(coords_range)).flatten(1)
|
688 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
689 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
690 |
+
|
691 |
+
for i, w in enumerate(window_size):
|
692 |
+
relative_coords[:, :, i] += w - 1 # shift to start from 0
|
693 |
+
|
694 |
+
for i, r in enumerate(relative_size[1:]):
|
695 |
+
relative_coords[:, :, :i + 1] *= r
|
696 |
+
|
697 |
+
self.seq_len = np.prod(window_size) + num_cls_tokens
|
698 |
+
relative_position_index = torch.zeros((self.seq_len, self.seq_len), dtype=relative_coords.dtype)
|
699 |
+
relative_position_index[num_cls_tokens:, num_cls_tokens:] = relative_coords.sum(-1)
|
700 |
+
|
701 |
+
start = np.prod(relative_size)
|
702 |
+
cls2loc = torch.arange(num_cls_tokens).unsqueeze(1) + start
|
703 |
+
relative_position_index[:num_cls_tokens, num_cls_tokens:] = cls2loc
|
704 |
+
start += num_cls_tokens
|
705 |
+
|
706 |
+
loc2cls = torch.arange(num_cls_tokens).unsqueeze(0) + start
|
707 |
+
relative_position_index[num_cls_tokens:, :num_cls_tokens] = loc2cls
|
708 |
+
start += num_cls_tokens
|
709 |
+
|
710 |
+
cls2cls = torch.arange(num_cls_tokens ** 2).view(num_cls_tokens, num_cls_tokens) + start
|
711 |
+
relative_position_index[:num_cls_tokens, :num_cls_tokens] = cls2cls
|
712 |
+
|
713 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
714 |
+
|
715 |
+
def forward(self, from_idx=None, to_idx=None):
|
716 |
+
"""
|
717 |
+
from_idx: indices of query tokens (1-dim)
|
718 |
+
to_idx: indices of key/value tokens (1-dim, or 2-dim w/ one row per query)
|
719 |
+
"""
|
720 |
+
attn_idx = self.relative_position_index
|
721 |
+
|
722 |
+
# query indices
|
723 |
+
if from_idx is not None:
|
724 |
+
attn_idx = attn_idx[from_idx]
|
725 |
+
|
726 |
+
# key indices
|
727 |
+
if to_idx is not None:
|
728 |
+
assert to_idx.ndim in (1, 2), "to_idx must be 1- or 2-dimensional tensors"
|
729 |
+
if to_idx.ndim == 1:
|
730 |
+
attn_idx = attn_idx[:, to_idx]
|
731 |
+
else:
|
732 |
+
attn_idx = attn_idx.gather(1, to_idx)
|
733 |
+
|
734 |
+
rows, cols = attn_idx.shape
|
735 |
+
relative_position_bias = self.relative_position_bias_table[attn_idx.flatten()]
|
736 |
+
relative_position_bias = rearrange(relative_position_bias, '(i j) h -> h i j', i=rows, j=cols)
|
737 |
+
return relative_position_bias.contiguous()
|
738 |
+
|
739 |
+
|
740 |
+
class BeitEncoder(nn.Module):
|
741 |
+
def __init__(self, config, window_size=None):
|
742 |
+
super().__init__()
|
743 |
+
self.config = config
|
744 |
+
if config.use_shared_relative_position_bias:
|
745 |
+
self.relative_position_bias = BeitRelativePositionBias3D(config, window_size=window_size)
|
746 |
+
else:
|
747 |
+
self.relative_position_bias = None
|
748 |
+
|
749 |
+
self._register_token_order(window_size)
|
750 |
+
|
751 |
+
# stochastic depth decay rule
|
752 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
|
753 |
+
|
754 |
+
# node sparsification
|
755 |
+
token_keep_rate = [1] * config.num_hidden_layers
|
756 |
+
for loc in config.token_drop_loc:
|
757 |
+
token_keep_rate[loc] = config.token_keep_rate
|
758 |
+
|
759 |
+
self.layer = nn.ModuleList(
|
760 |
+
[
|
761 |
+
BeitLayer(
|
762 |
+
config,
|
763 |
+
window_size=window_size if config.use_relative_position_bias else None,
|
764 |
+
drop_path_rate=dpr[i], token_keep_rate=token_keep_rate[i]
|
765 |
+
)
|
766 |
+
for i in range(config.num_hidden_layers)
|
767 |
+
]
|
768 |
+
)
|
769 |
+
|
770 |
+
self.gradient_checkpointing = False
|
771 |
+
|
772 |
+
def _register_token_order(self, shape):
|
773 |
+
if self.config.token_3d_order == 'none':
|
774 |
+
order = None
|
775 |
+
elif self.config.token_3d_order == 'zcurve':
|
776 |
+
nbits = max(shape).bit_length()
|
777 |
+
coords = list(np.ndindex(*shape))
|
778 |
+
order = zCurve.par_interlace(coords, len(shape), nbits)
|
779 |
+
order = torch.tensor(np.argsort(order))
|
780 |
+
elif self.config.token_3d_order == 'hilbert':
|
781 |
+
nbits = max(shape).bit_length()
|
782 |
+
coords = list(np.ndindex(*shape))
|
783 |
+
order = hilbert.encode(np.stack(coords), len(shape), nbits)
|
784 |
+
order = torch.tensor(np.argsort(order))
|
785 |
+
else:
|
786 |
+
raise NotImplementedError(f"Token ordering {self.config.token_3d_order} not supported")
|
787 |
+
|
788 |
+
if order is not None:
|
789 |
+
self.register_buffer('token_order', order, persistent=False)
|
790 |
+
else:
|
791 |
+
self.token_order = None
|
792 |
+
|
793 |
+
def forward(
|
794 |
+
self,
|
795 |
+
hidden_states,
|
796 |
+
head_mask=None,
|
797 |
+
output_attentions=False,
|
798 |
+
output_hidden_states=False,
|
799 |
+
output_token_idx=False,
|
800 |
+
return_dict=True,
|
801 |
+
):
|
802 |
+
all_hidden_states = () if output_hidden_states else None
|
803 |
+
all_self_attentions = () if output_attentions else None
|
804 |
+
all_token_idx = () if output_token_idx else None
|
805 |
+
|
806 |
+
token_idx = self.token_order
|
807 |
+
if token_idx is not None:
|
808 |
+
cls_states, local_states = hidden_states[:, :self.config.num_cls_tokens], hidden_states[:, self.config.num_cls_tokens:]
|
809 |
+
local_states = torch.index_select(local_states, dim=1, index=token_idx)
|
810 |
+
hidden_states = torch.cat((cls_states, local_states), 1)
|
811 |
+
|
812 |
+
for i, layer_module in enumerate(self.layer):
|
813 |
+
if output_hidden_states:
|
814 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
815 |
+
|
816 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
817 |
+
|
818 |
+
if self.gradient_checkpointing and self.training:
|
819 |
+
|
820 |
+
def create_custom_forward(module):
|
821 |
+
def custom_forward(*inputs):
|
822 |
+
return module(*inputs, output_attentions)
|
823 |
+
|
824 |
+
return custom_forward
|
825 |
+
|
826 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
827 |
+
create_custom_forward(layer_module),
|
828 |
+
hidden_states,
|
829 |
+
layer_head_mask,
|
830 |
+
)
|
831 |
+
else:
|
832 |
+
relative_position_bias = (
|
833 |
+
self.relative_position_bias() if self.relative_position_bias is not None else None
|
834 |
+
)
|
835 |
+
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions, relative_position_bias, token_idx)
|
836 |
+
|
837 |
+
hidden_states = layer_outputs[0]
|
838 |
+
|
839 |
+
if layer_module.token_keep_rate < 1:
|
840 |
+
token_idx = layer_outputs[-1]
|
841 |
+
|
842 |
+
if output_token_idx:
|
843 |
+
all_token_idx = all_token_idx + (token_idx,)
|
844 |
+
|
845 |
+
if output_attentions:
|
846 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
847 |
+
|
848 |
+
if output_hidden_states:
|
849 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
850 |
+
|
851 |
+
if not return_dict:
|
852 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
853 |
+
return BeitModelOutput(
|
854 |
+
last_hidden_state=hidden_states,
|
855 |
+
hidden_states=all_hidden_states,
|
856 |
+
attentions=all_self_attentions,
|
857 |
+
token_idx=all_token_idx
|
858 |
+
)
|
859 |
+
|
860 |
+
|
861 |
+
class BeitPreTrainedModel(PreTrainedModel):
|
862 |
+
"""
|
863 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
864 |
+
models.
|
865 |
+
"""
|
866 |
+
|
867 |
+
config_class = BeitConfig
|
868 |
+
base_model_prefix = "beit"
|
869 |
+
supports_gradient_checkpointing = True
|
870 |
+
|
871 |
+
def _init_weights(self, module):
|
872 |
+
"""Initialize the weights"""
|
873 |
+
if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
|
874 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
875 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
876 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
877 |
+
if module.bias is not None:
|
878 |
+
module.bias.data.zero_()
|
879 |
+
elif isinstance(module, nn.Embedding):
|
880 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
881 |
+
if module.padding_idx is not None:
|
882 |
+
module.weight.data[module.padding_idx].zero_()
|
883 |
+
elif isinstance(module, nn.LayerNorm):
|
884 |
+
module.bias.data.zero_()
|
885 |
+
module.weight.data.fill_(1.0)
|
886 |
+
|
887 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
888 |
+
if isinstance(module, BeitEncoder):
|
889 |
+
module.gradient_checkpointing = value
|
890 |
+
|
891 |
+
|
892 |
+
BEIT_START_DOCSTRING = r"""
|
893 |
+
This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ subclass. Use
|
894 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
895 |
+
behavior.
|
896 |
+
|
897 |
+
Parameters:
|
898 |
+
config (:class:`~transformers.BeitConfig`): Model configuration class with all the parameters of the model.
|
899 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
900 |
+
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
|
901 |
+
weights.
|
902 |
+
"""
|
903 |
+
|
904 |
+
BEIT_INPUTS_DOCSTRING = r"""
|
905 |
+
Args:
|
906 |
+
pixel_values (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_channels, height, width)`):
|
907 |
+
Pixel values. Pixel values can be obtained using :class:`~transformers.BeitFeatureExtractor`. See
|
908 |
+
:meth:`transformers.BeitFeatureExtractor.__call__` for details.
|
909 |
+
|
910 |
+
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
|
911 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:
|
912 |
+
|
913 |
+
- 1 indicates the head is **not masked**,
|
914 |
+
- 0 indicates the head is **masked**.
|
915 |
+
|
916 |
+
output_attentions (:obj:`bool`, `optional`):
|
917 |
+
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
|
918 |
+
tensors for more detail.
|
919 |
+
output_hidden_states (:obj:`bool`, `optional`):
|
920 |
+
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
|
921 |
+
more detail.
|
922 |
+
return_dict (:obj:`bool`, `optional`):
|
923 |
+
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
|
924 |
+
"""
|
925 |
+
|
926 |
+
|
927 |
+
@add_start_docstrings(
|
928 |
+
"The bare Beit Model transformer outputting raw hidden-states without any specific head on top.",
|
929 |
+
BEIT_START_DOCSTRING,
|
930 |
+
)
|
931 |
+
class BeitModel(BeitPreTrainedModel):
|
932 |
+
def __init__(self, config, add_pooling_layer=True, num_frames=None):
|
933 |
+
super().__init__(config)
|
934 |
+
self.config = config
|
935 |
+
|
936 |
+
self.embeddings = BeitEmbeddings(config)
|
937 |
+
self.window_size = self.embeddings.patch_embeddings.patch_shape
|
938 |
+
if num_frames is not None:
|
939 |
+
self.window_size = (num_frames,) + self.window_size
|
940 |
+
self.encoder = BeitEncoder(config, window_size=self.window_size)
|
941 |
+
|
942 |
+
self.layernorm = (
|
943 |
+
nn.Identity() if config.use_mean_pooling else nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
944 |
+
)
|
945 |
+
self.pooler = BeitPooler(config) if add_pooling_layer else None
|
946 |
+
|
947 |
+
# Initialize weights and apply final processing
|
948 |
+
self.post_init()
|
949 |
+
|
950 |
+
def get_input_embeddings(self):
|
951 |
+
return self.embeddings.patch_embeddings
|
952 |
+
|
953 |
+
def _prune_heads(self, heads_to_prune):
|
954 |
+
"""
|
955 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
956 |
+
class PreTrainedModel
|
957 |
+
"""
|
958 |
+
for layer, heads in heads_to_prune.items():
|
959 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
960 |
+
|
961 |
+
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
|
962 |
+
@replace_return_docstrings(output_type=BeitModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
|
963 |
+
def forward(
|
964 |
+
self,
|
965 |
+
pixel_values=None,
|
966 |
+
bool_masked_pos=None,
|
967 |
+
head_mask=None,
|
968 |
+
output_attentions=None,
|
969 |
+
output_hidden_states=None,
|
970 |
+
output_token_idx=None,
|
971 |
+
return_dict=None,
|
972 |
+
):
|
973 |
+
r"""
|
974 |
+
Returns:
|
975 |
+
|
976 |
+
Examples::
|
977 |
+
|
978 |
+
>>> from transformers import BeitFeatureExtractor, BeitModel
|
979 |
+
>>> from PIL import Image
|
980 |
+
>>> import requests
|
981 |
+
|
982 |
+
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
983 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
984 |
+
|
985 |
+
>>> feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224-pt22k-ft22k')
|
986 |
+
>>> model = BeitModel.from_pretrained('microsoft/beit-base-patch16-224-pt22k-ft22k')
|
987 |
+
|
988 |
+
>>> inputs = feature_extractor(images=image, return_tensors="pt")
|
989 |
+
>>> outputs = model(**inputs)
|
990 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
991 |
+
"""
|
992 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
993 |
+
output_hidden_states = (
|
994 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
995 |
+
)
|
996 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
997 |
+
|
998 |
+
if pixel_values is None:
|
999 |
+
raise ValueError("You have to specify pixel_values")
|
1000 |
+
|
1001 |
+
# Prepare head mask if needed
|
1002 |
+
# 1.0 in head_mask indicate we keep the head
|
1003 |
+
# attention_probs has shape bsz x n_heads x N x N
|
1004 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
1005 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
1006 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
1007 |
+
|
1008 |
+
embedding_output = self.embeddings(pixel_values, bool_masked_pos)
|
1009 |
+
|
1010 |
+
encoder_outputs = self.encoder(
|
1011 |
+
embedding_output,
|
1012 |
+
head_mask=head_mask,
|
1013 |
+
output_attentions=output_attentions,
|
1014 |
+
output_hidden_states=output_hidden_states,
|
1015 |
+
output_token_idx=output_token_idx,
|
1016 |
+
return_dict=return_dict,
|
1017 |
+
)
|
1018 |
+
sequence_output = encoder_outputs[0]
|
1019 |
+
sequence_output = self.layernorm(sequence_output)
|
1020 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
1021 |
+
|
1022 |
+
if not return_dict:
|
1023 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
1024 |
+
|
1025 |
+
return BeitModelOutputWithPooling(
|
1026 |
+
last_hidden_state=sequence_output,
|
1027 |
+
pooler_output=pooled_output,
|
1028 |
+
hidden_states=encoder_outputs.hidden_states,
|
1029 |
+
attentions=encoder_outputs.attentions,
|
1030 |
+
token_idx=encoder_outputs.token_idx,
|
1031 |
+
)
|
1032 |
+
|
1033 |
+
|
1034 |
+
class BeitPooler(nn.Module):
|
1035 |
+
def __init__(self, config):
|
1036 |
+
super().__init__()
|
1037 |
+
self.layernorm = (
|
1038 |
+
nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if config.use_mean_pooling else None
|
1039 |
+
)
|
1040 |
+
|
1041 |
+
def forward(self, hidden_states):
|
1042 |
+
if self.layernorm is not None:
|
1043 |
+
# Mean pool the final hidden states of the patch tokens
|
1044 |
+
patch_tokens = hidden_states[:, 1:, :]
|
1045 |
+
pooled_output = self.layernorm(patch_tokens.mean(1))
|
1046 |
+
else:
|
1047 |
+
# Pool by simply taking the final hidden state of the [CLS] token
|
1048 |
+
pooled_output = hidden_states[:, 0]
|
1049 |
+
|
1050 |
+
return pooled_output
|
1051 |
+
|
1052 |
+
|
1053 |
+
@add_start_docstrings(
|
1054 |
+
"Beit Model transformer with a 'language' modeling head on top (to predict visual tokens).",
|
1055 |
+
BEIT_START_DOCSTRING,
|
1056 |
+
)
|
1057 |
+
class BeitForMaskedImageModeling(BeitPreTrainedModel):
|
1058 |
+
def __init__(self, config):
|
1059 |
+
super().__init__(config)
|
1060 |
+
|
1061 |
+
self.num_labels = config.num_labels
|
1062 |
+
self.beit = BeitModel(config, add_pooling_layer=False)
|
1063 |
+
|
1064 |
+
# Classifier head
|
1065 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
1066 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size)
|
1067 |
+
|
1068 |
+
# Initialize weights and apply final processing
|
1069 |
+
self.post_init()
|
1070 |
+
|
1071 |
+
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
|
1072 |
+
@replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
|
1073 |
+
def forward(
|
1074 |
+
self,
|
1075 |
+
pixel_values=None,
|
1076 |
+
bool_masked_pos=None,
|
1077 |
+
head_mask=None,
|
1078 |
+
labels=None,
|
1079 |
+
output_attentions=None,
|
1080 |
+
output_hidden_states=None,
|
1081 |
+
return_dict=None,
|
1082 |
+
):
|
1083 |
+
r"""
|
1084 |
+
bool_masked_pos (:obj:`torch.BoolTensor` of shape :obj:`(batch_size, num_patches)`):
|
1085 |
+
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
|
1086 |
+
|
1087 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
1088 |
+
Labels for computing the image classification/regression loss. Indices should be in :obj:`[0, ...,
|
1089 |
+
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
1090 |
+
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1091 |
+
|
1092 |
+
Returns:
|
1093 |
+
|
1094 |
+
Examples::
|
1095 |
+
|
1096 |
+
>>> from transformers import BeitFeatureExtractor, BeitForMaskedImageModeling
|
1097 |
+
>>> from PIL import Image
|
1098 |
+
>>> import requests
|
1099 |
+
|
1100 |
+
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
1101 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1102 |
+
|
1103 |
+
>>> feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224-pt22k')
|
1104 |
+
>>> model = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k')
|
1105 |
+
|
1106 |
+
>>> inputs = feature_extractor(images=image, return_tensors="pt")
|
1107 |
+
>>> outputs = model(**inputs)
|
1108 |
+
>>> logits = outputs.logits
|
1109 |
+
"""
|
1110 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1111 |
+
|
1112 |
+
outputs = self.beit(
|
1113 |
+
pixel_values,
|
1114 |
+
bool_masked_pos=bool_masked_pos,
|
1115 |
+
head_mask=head_mask,
|
1116 |
+
output_attentions=output_attentions,
|
1117 |
+
output_hidden_states=output_hidden_states,
|
1118 |
+
return_dict=return_dict,
|
1119 |
+
)
|
1120 |
+
|
1121 |
+
sequence_output = outputs[0]
|
1122 |
+
sequence_output = self.layernorm(sequence_output)
|
1123 |
+
prediction_scores = self.lm_head(sequence_output[:, 1:])
|
1124 |
+
|
1125 |
+
masked_lm_loss = None
|
1126 |
+
if labels is not None:
|
1127 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
1128 |
+
masked_lm_loss = loss_fct(prediction_scores[bool_masked_pos], labels)
|
1129 |
+
|
1130 |
+
if not return_dict:
|
1131 |
+
output = (prediction_scores,) + outputs[2:]
|
1132 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1133 |
+
|
1134 |
+
return MaskedLMOutput(
|
1135 |
+
loss=masked_lm_loss,
|
1136 |
+
logits=prediction_scores,
|
1137 |
+
hidden_states=outputs.hidden_states,
|
1138 |
+
attentions=outputs.attentions,
|
1139 |
+
)
|
1140 |
+
|
1141 |
+
|
1142 |
+
@add_start_docstrings(
|
1143 |
+
"""
|
1144 |
+
Beit Model transformer with an image classification head on top (a linear layer on top of the average of the final
|
1145 |
+
hidden states of the patch tokens) e.g. for ImageNet.
|
1146 |
+
""",
|
1147 |
+
BEIT_START_DOCSTRING,
|
1148 |
+
)
|
1149 |
+
class BeitForImageClassification(BeitPreTrainedModel):
|
1150 |
+
def __init__(self, config):
|
1151 |
+
super().__init__(config)
|
1152 |
+
|
1153 |
+
self.num_labels = config.num_labels
|
1154 |
+
self.beit = BeitModel(config, add_pooling_layer=True)
|
1155 |
+
|
1156 |
+
# Classifier head
|
1157 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
|
1158 |
+
|
1159 |
+
# Initialize weights and apply final processing
|
1160 |
+
self.post_init()
|
1161 |
+
|
1162 |
+
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
|
1163 |
+
@replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
|
1164 |
+
def forward(
|
1165 |
+
self,
|
1166 |
+
pixel_values=None,
|
1167 |
+
head_mask=None,
|
1168 |
+
labels=None,
|
1169 |
+
output_attentions=None,
|
1170 |
+
output_hidden_states=None,
|
1171 |
+
return_dict=None,
|
1172 |
+
):
|
1173 |
+
r"""
|
1174 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
1175 |
+
Labels for computing the image classification/regression loss. Indices should be in :obj:`[0, ...,
|
1176 |
+
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
1177 |
+
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1178 |
+
|
1179 |
+
Returns:
|
1180 |
+
|
1181 |
+
Examples::
|
1182 |
+
|
1183 |
+
>>> from transformers import BeitFeatureExtractor, BeitForImageClassification
|
1184 |
+
>>> from PIL import Image
|
1185 |
+
>>> import requests
|
1186 |
+
|
1187 |
+
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
1188 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1189 |
+
|
1190 |
+
>>> feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224')
|
1191 |
+
>>> model = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224')
|
1192 |
+
|
1193 |
+
>>> inputs = feature_extractor(images=image, return_tensors="pt")
|
1194 |
+
>>> outputs = model(**inputs)
|
1195 |
+
>>> logits = outputs.logits
|
1196 |
+
>>> # model predicts one of the 1000 ImageNet classes
|
1197 |
+
>>> predicted_class_idx = logits.argmax(-1).item()
|
1198 |
+
>>> print("Predicted class:", model.config.id2label[predicted_class_idx])
|
1199 |
+
"""
|
1200 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1201 |
+
|
1202 |
+
outputs = self.beit(
|
1203 |
+
pixel_values,
|
1204 |
+
head_mask=head_mask,
|
1205 |
+
output_attentions=output_attentions,
|
1206 |
+
output_hidden_states=output_hidden_states,
|
1207 |
+
return_dict=return_dict,
|
1208 |
+
)
|
1209 |
+
|
1210 |
+
pooled_output = outputs.pooler_output if return_dict else outputs[1]
|
1211 |
+
|
1212 |
+
logits = self.classifier(pooled_output)
|
1213 |
+
|
1214 |
+
loss = None
|
1215 |
+
if labels is not None:
|
1216 |
+
if self.num_labels == 1:
|
1217 |
+
# We are doing regression
|
1218 |
+
loss_fct = MSELoss()
|
1219 |
+
loss = loss_fct(logits.view(-1), labels.view(-1))
|
1220 |
+
else:
|
1221 |
+
loss_fct = CrossEntropyLoss()
|
1222 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1223 |
+
|
1224 |
+
if not return_dict:
|
1225 |
+
output = (logits,) + outputs[2:]
|
1226 |
+
return ((loss,) + output) if loss is not None else output
|
1227 |
+
|
1228 |
+
return SequenceClassifierOutput(
|
1229 |
+
loss=loss,
|
1230 |
+
logits=logits,
|
1231 |
+
hidden_states=outputs.hidden_states,
|
1232 |
+
attentions=outputs.attentions,
|
1233 |
+
)
|
1234 |
+
|
1235 |
+
|
1236 |
+
class BeitConvModule(nn.Module):
|
1237 |
+
"""
|
1238 |
+
A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution
|
1239 |
+
layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU).
|
1240 |
+
|
1241 |
+
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
|
1242 |
+
"""
|
1243 |
+
|
1244 |
+
def __init__(self, in_channels, out_channels, kernel_size, padding=0, bias=False, dilation=1):
|
1245 |
+
super().__init__()
|
1246 |
+
self.conv = nn.Conv2d(
|
1247 |
+
in_channels=in_channels,
|
1248 |
+
out_channels=out_channels,
|
1249 |
+
kernel_size=kernel_size,
|
1250 |
+
padding=padding,
|
1251 |
+
bias=bias,
|
1252 |
+
dilation=dilation,
|
1253 |
+
)
|
1254 |
+
self.bn = nn.BatchNorm2d(out_channels)
|
1255 |
+
self.activation = nn.ReLU()
|
1256 |
+
|
1257 |
+
def forward(self, input):
|
1258 |
+
output = self.conv(input)
|
1259 |
+
output = self.bn(output)
|
1260 |
+
output = self.activation(output)
|
1261 |
+
|
1262 |
+
return output
|
1263 |
+
|
1264 |
+
|
1265 |
+
class BeitPyramidPoolingModule(nn.ModuleList):
|
1266 |
+
"""
|
1267 |
+
Pyramid Pooling Module (PPM) used in PSPNet.
|
1268 |
+
|
1269 |
+
Args:
|
1270 |
+
pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
|
1271 |
+
Module.
|
1272 |
+
in_channels (int): Input channels.
|
1273 |
+
channels (int): Channels after modules, before conv_seg.
|
1274 |
+
align_corners (bool): align_corners argument of F.interpolate.
|
1275 |
+
|
1276 |
+
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
|
1277 |
+
"""
|
1278 |
+
|
1279 |
+
def __init__(self, pool_scales, in_channels, channels, align_corners):
|
1280 |
+
super().__init__()
|
1281 |
+
self.pool_scales = pool_scales
|
1282 |
+
self.align_corners = align_corners
|
1283 |
+
self.in_channels = in_channels
|
1284 |
+
self.channels = channels
|
1285 |
+
for pool_scale in pool_scales:
|
1286 |
+
self.append(
|
1287 |
+
nn.Sequential(
|
1288 |
+
nn.AdaptiveAvgPool2d(pool_scale),
|
1289 |
+
BeitConvModule(self.in_channels, self.channels, kernel_size=1),
|
1290 |
+
)
|
1291 |
+
)
|
1292 |
+
|
1293 |
+
def forward(self, x):
|
1294 |
+
ppm_outs = []
|
1295 |
+
for ppm in self:
|
1296 |
+
ppm_out = ppm(x)
|
1297 |
+
upsampled_ppm_out = nn.functional.interpolate(
|
1298 |
+
ppm_out, size=x.size()[2:], mode="bilinear", align_corners=self.align_corners
|
1299 |
+
)
|
1300 |
+
ppm_outs.append(upsampled_ppm_out)
|
1301 |
+
return ppm_outs
|
1302 |
+
|
1303 |
+
|
1304 |
+
class BeitUperHead(nn.Module):
|
1305 |
+
"""
|
1306 |
+
Unified Perceptual Parsing for Scene Understanding. This head is the implementation of `UPerNet
|
1307 |
+
<https://arxiv.org/abs/1807.10221>`_.
|
1308 |
+
|
1309 |
+
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
|
1310 |
+
"""
|
1311 |
+
|
1312 |
+
def __init__(self, config):
|
1313 |
+
super().__init__()
|
1314 |
+
|
1315 |
+
self.pool_scales = config.pool_scales # e.g. (1, 2, 3, 6)
|
1316 |
+
self.in_channels = [config.hidden_size] * 4 # e.g. [768, 768, 768, 768]
|
1317 |
+
self.channels = config.hidden_size
|
1318 |
+
self.align_corners = False
|
1319 |
+
self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1)
|
1320 |
+
|
1321 |
+
# PSP Module
|
1322 |
+
self.psp_modules = BeitPyramidPoolingModule(
|
1323 |
+
self.pool_scales,
|
1324 |
+
self.in_channels[-1],
|
1325 |
+
self.channels,
|
1326 |
+
align_corners=self.align_corners,
|
1327 |
+
)
|
1328 |
+
self.bottleneck = BeitConvModule(
|
1329 |
+
self.in_channels[-1] + len(self.pool_scales) * self.channels,
|
1330 |
+
self.channels,
|
1331 |
+
kernel_size=3,
|
1332 |
+
padding=1,
|
1333 |
+
)
|
1334 |
+
# FPN Module
|
1335 |
+
self.lateral_convs = nn.ModuleList()
|
1336 |
+
self.fpn_convs = nn.ModuleList()
|
1337 |
+
for in_channels in self.in_channels[:-1]: # skip the top layer
|
1338 |
+
l_conv = BeitConvModule(in_channels, self.channels, kernel_size=1)
|
1339 |
+
fpn_conv = BeitConvModule(self.channels, self.channels, kernel_size=3, padding=1)
|
1340 |
+
self.lateral_convs.append(l_conv)
|
1341 |
+
self.fpn_convs.append(fpn_conv)
|
1342 |
+
|
1343 |
+
self.fpn_bottleneck = BeitConvModule(
|
1344 |
+
len(self.in_channels) * self.channels,
|
1345 |
+
self.channels,
|
1346 |
+
kernel_size=3,
|
1347 |
+
padding=1,
|
1348 |
+
)
|
1349 |
+
|
1350 |
+
def psp_forward(self, inputs):
|
1351 |
+
x = inputs[-1]
|
1352 |
+
psp_outs = [x]
|
1353 |
+
psp_outs.extend(self.psp_modules(x))
|
1354 |
+
psp_outs = torch.cat(psp_outs, dim=1)
|
1355 |
+
output = self.bottleneck(psp_outs)
|
1356 |
+
|
1357 |
+
return output
|
1358 |
+
|
1359 |
+
def forward(self, encoder_hidden_states):
|
1360 |
+
# build laterals
|
1361 |
+
laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)]
|
1362 |
+
|
1363 |
+
laterals.append(self.psp_forward(encoder_hidden_states))
|
1364 |
+
|
1365 |
+
# build top-down path
|
1366 |
+
used_backbone_levels = len(laterals)
|
1367 |
+
for i in range(used_backbone_levels - 1, 0, -1):
|
1368 |
+
prev_shape = laterals[i - 1].shape[2:]
|
1369 |
+
laterals[i - 1] = laterals[i - 1] + nn.functional.interpolate(
|
1370 |
+
laterals[i], size=prev_shape, mode="bilinear", align_corners=self.align_corners
|
1371 |
+
)
|
1372 |
+
|
1373 |
+
# build outputs
|
1374 |
+
fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)]
|
1375 |
+
# append psp feature
|
1376 |
+
fpn_outs.append(laterals[-1])
|
1377 |
+
|
1378 |
+
for i in range(used_backbone_levels - 1, 0, -1):
|
1379 |
+
fpn_outs[i] = nn.functional.interpolate(
|
1380 |
+
fpn_outs[i], size=fpn_outs[0].shape[2:], mode="bilinear", align_corners=self.align_corners
|
1381 |
+
)
|
1382 |
+
fpn_outs = torch.cat(fpn_outs, dim=1)
|
1383 |
+
output = self.fpn_bottleneck(fpn_outs)
|
1384 |
+
output = self.classifier(output)
|
1385 |
+
|
1386 |
+
return output
|
1387 |
+
|
1388 |
+
|
1389 |
+
class BeitFCNHead(nn.Module):
|
1390 |
+
"""
|
1391 |
+
Fully Convolution Networks for Semantic Segmentation. This head is implemented of `FCNNet
|
1392 |
+
<https://arxiv.org/abs/1411.4038>`_.
|
1393 |
+
|
1394 |
+
Args:
|
1395 |
+
config (BeitConfig): Configuration.
|
1396 |
+
in_channels
|
1397 |
+
kernel_size (int): The kernel size for convs in the head. Default: 3.
|
1398 |
+
dilation (int): The dilation rate for convs in the head. Default: 1.
|
1399 |
+
|
1400 |
+
|
1401 |
+
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
|
1402 |
+
"""
|
1403 |
+
|
1404 |
+
def __init__(self, config, in_index=2, kernel_size=3, dilation=1):
|
1405 |
+
super().__init__()
|
1406 |
+
self.in_channels = config.hidden_size
|
1407 |
+
self.channels = config.auxiliary_channels
|
1408 |
+
self.num_convs = config.auxiliary_num_convs
|
1409 |
+
self.concat_input = config.auxiliary_concat_input
|
1410 |
+
self.in_index = in_index
|
1411 |
+
|
1412 |
+
conv_padding = (kernel_size // 2) * dilation
|
1413 |
+
convs = []
|
1414 |
+
convs.append(
|
1415 |
+
BeitConvModule(
|
1416 |
+
self.in_channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation
|
1417 |
+
)
|
1418 |
+
)
|
1419 |
+
for i in range(self.num_convs - 1):
|
1420 |
+
convs.append(
|
1421 |
+
BeitConvModule(
|
1422 |
+
self.channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation
|
1423 |
+
)
|
1424 |
+
)
|
1425 |
+
if self.num_convs == 0:
|
1426 |
+
self.convs = nn.Identity()
|
1427 |
+
else:
|
1428 |
+
self.convs = nn.Sequential(*convs)
|
1429 |
+
if self.concat_input:
|
1430 |
+
self.conv_cat = BeitConvModule(
|
1431 |
+
self.in_channels + self.channels, self.channels, kernel_size=kernel_size, padding=kernel_size // 2
|
1432 |
+
)
|
1433 |
+
|
1434 |
+
self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1)
|
1435 |
+
|
1436 |
+
def forward(self, encoder_hidden_states):
|
1437 |
+
# just take the relevant feature maps
|
1438 |
+
hidden_states = encoder_hidden_states[self.in_index]
|
1439 |
+
output = self.convs(hidden_states)
|
1440 |
+
if self.concat_input:
|
1441 |
+
output = self.conv_cat(torch.cat([hidden_states, output], dim=1))
|
1442 |
+
output = self.classifier(output)
|
1443 |
+
return output
|
1444 |
+
|
1445 |
+
|
1446 |
+
@add_start_docstrings(
|
1447 |
+
"""
|
1448 |
+
Beit Model transformer with a semantic segmentation head on top e.g. for ADE20k, CityScapes.
|
1449 |
+
""",
|
1450 |
+
BEIT_START_DOCSTRING,
|
1451 |
+
)
|
1452 |
+
class BeitForSemanticSegmentation(BeitPreTrainedModel):
|
1453 |
+
def __init__(self, config):
|
1454 |
+
super().__init__(config)
|
1455 |
+
|
1456 |
+
self.num_labels = config.num_labels
|
1457 |
+
self.beit = BeitModel(config, add_pooling_layer=False)
|
1458 |
+
|
1459 |
+
# FPNs
|
1460 |
+
self.fpn1 = nn.Sequential(
|
1461 |
+
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
|
1462 |
+
nn.BatchNorm2d(config.hidden_size),
|
1463 |
+
nn.GELU(),
|
1464 |
+
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
|
1465 |
+
)
|
1466 |
+
self.fpn2 = nn.Sequential(
|
1467 |
+
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
|
1468 |
+
)
|
1469 |
+
self.fpn3 = nn.Identity()
|
1470 |
+
self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2)
|
1471 |
+
|
1472 |
+
# Semantic segmentation head(s)
|
1473 |
+
self.decode_head = BeitUperHead(config)
|
1474 |
+
self.auxiliary_head = BeitFCNHead(config) if config.use_auxiliary_head else None
|
1475 |
+
|
1476 |
+
# Initialize weights and apply final processing
|
1477 |
+
self.post_init()
|
1478 |
+
|
1479 |
+
def compute_loss(self, logits, auxiliary_logits, labels):
|
1480 |
+
# upsample logits to the images' original size
|
1481 |
+
upsampled_logits = nn.functional.interpolate(
|
1482 |
+
logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
|
1483 |
+
)
|
1484 |
+
if auxiliary_logits is not None:
|
1485 |
+
upsampled_auxiliary_logits = nn.functional.interpolate(
|
1486 |
+
auxiliary_logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
|
1487 |
+
)
|
1488 |
+
# compute weighted loss
|
1489 |
+
loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index)
|
1490 |
+
main_loss = loss_fct(upsampled_logits, labels)
|
1491 |
+
auxiliary_loss = loss_fct(upsampled_auxiliary_logits, labels)
|
1492 |
+
loss = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss
|
1493 |
+
|
1494 |
+
return loss
|
1495 |
+
|
1496 |
+
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
|
1497 |
+
@replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
|
1498 |
+
def forward(
|
1499 |
+
self,
|
1500 |
+
pixel_values=None,
|
1501 |
+
head_mask=None,
|
1502 |
+
labels=None,
|
1503 |
+
output_attentions=None,
|
1504 |
+
output_hidden_states=None,
|
1505 |
+
return_dict=None,
|
1506 |
+
):
|
1507 |
+
r"""
|
1508 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, height, width)`, `optional`):
|
1509 |
+
Ground truth semantic segmentation maps for computing the loss. Indices should be in :obj:`[0, ...,
|
1510 |
+
config.num_labels - 1]`. If :obj:`config.num_labels > 1`, a classification loss is computed
|
1511 |
+
(Cross-Entropy).
|
1512 |
+
|
1513 |
+
Returns:
|
1514 |
+
|
1515 |
+
Examples::
|
1516 |
+
|
1517 |
+
>>> from transformers import BeitFeatureExtractor, BeitForSemanticSegmentation
|
1518 |
+
>>> from PIL import Image
|
1519 |
+
>>> import requests
|
1520 |
+
|
1521 |
+
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
1522 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1523 |
+
|
1524 |
+
>>> feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-finetuned-ade-640-640')
|
1525 |
+
>>> model = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640')
|
1526 |
+
|
1527 |
+
>>> inputs = feature_extractor(images=image, return_tensors="pt")
|
1528 |
+
>>> outputs = model(**inputs)
|
1529 |
+
>>> # logits are of shape (batch_size, num_labels, height/4, width/4)
|
1530 |
+
>>> logits = outputs.logits
|
1531 |
+
"""
|
1532 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1533 |
+
output_hidden_states = (
|
1534 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1535 |
+
)
|
1536 |
+
|
1537 |
+
outputs = self.beit(
|
1538 |
+
pixel_values,
|
1539 |
+
head_mask=head_mask,
|
1540 |
+
output_attentions=output_attentions,
|
1541 |
+
output_hidden_states=True, # we need the intermediate hidden states
|
1542 |
+
return_dict=return_dict,
|
1543 |
+
)
|
1544 |
+
|
1545 |
+
encoder_hidden_states = outputs.hidden_states if return_dict else outputs[2]
|
1546 |
+
|
1547 |
+
# only keep certain features, and reshape
|
1548 |
+
# note that we do +1 as the encoder_hidden_states also includes the initial embeddings
|
1549 |
+
features = [feature for idx, feature in enumerate(encoder_hidden_states) if idx + 1 in self.config.out_indices]
|
1550 |
+
batch_size = pixel_values.shape[0]
|
1551 |
+
patch_resolution = self.config.image_size // self.config.patch_size
|
1552 |
+
features = [
|
1553 |
+
x[:, 1:, :].permute(0, 2, 1).reshape(batch_size, -1, patch_resolution, patch_resolution) for x in features
|
1554 |
+
]
|
1555 |
+
|
1556 |
+
# apply FPNs
|
1557 |
+
ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4]
|
1558 |
+
for i in range(len(features)):
|
1559 |
+
features[i] = ops[i](features[i])
|
1560 |
+
|
1561 |
+
logits = self.decode_head(features)
|
1562 |
+
auxiliary_logits = None
|
1563 |
+
if self.auxiliary_head is not None:
|
1564 |
+
auxiliary_logits = self.auxiliary_head(features)
|
1565 |
+
|
1566 |
+
loss = None
|
1567 |
+
if labels is not None:
|
1568 |
+
if self.config.num_labels == 1:
|
1569 |
+
raise ValueError("The number of labels should be greater than one")
|
1570 |
+
else:
|
1571 |
+
loss = self.compute_loss(logits, auxiliary_logits, labels)
|
1572 |
+
|
1573 |
+
if not return_dict:
|
1574 |
+
if output_hidden_states:
|
1575 |
+
output = (logits,) + outputs[2:]
|
1576 |
+
else:
|
1577 |
+
output = (logits,) + outputs[3:]
|
1578 |
+
return ((loss,) + output) if loss is not None else output
|
1579 |
+
|
1580 |
+
return SequenceClassifierOutput(
|
1581 |
+
loss=loss,
|
1582 |
+
logits=logits,
|
1583 |
+
hidden_states=outputs.hidden_states if output_hidden_states else None,
|
1584 |
+
attentions=outputs.attentions,
|
1585 |
+
)
|
svitt/sparse_xbert.py
ADDED
@@ -0,0 +1,2039 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""PyTorch BERT model. """
|
17 |
+
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import warnings
|
21 |
+
from dataclasses import dataclass
|
22 |
+
from typing import Optional, Tuple
|
23 |
+
|
24 |
+
import torch
|
25 |
+
from torch import Tensor, device, nn
|
26 |
+
import torch.utils.checkpoint
|
27 |
+
from torch import nn
|
28 |
+
from torch.nn import CrossEntropyLoss, MSELoss
|
29 |
+
import torch.nn.functional as F
|
30 |
+
|
31 |
+
from transformers.activations import ACT2FN
|
32 |
+
from transformers.file_utils import (
|
33 |
+
ModelOutput,
|
34 |
+
add_start_docstrings,
|
35 |
+
add_start_docstrings_to_model_forward,
|
36 |
+
replace_return_docstrings,
|
37 |
+
)
|
38 |
+
from transformers.modeling_outputs import (
|
39 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
40 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
41 |
+
CausalLMOutputWithCrossAttentions,
|
42 |
+
MaskedLMOutput,
|
43 |
+
MultipleChoiceModelOutput,
|
44 |
+
NextSentencePredictorOutput,
|
45 |
+
QuestionAnsweringModelOutput,
|
46 |
+
SequenceClassifierOutput,
|
47 |
+
TokenClassifierOutput,
|
48 |
+
)
|
49 |
+
from transformers.modeling_utils import (
|
50 |
+
PreTrainedModel,
|
51 |
+
apply_chunking_to_forward,
|
52 |
+
find_pruneable_heads_and_indices,
|
53 |
+
prune_linear_layer,
|
54 |
+
)
|
55 |
+
from svitt.sparse_config import BertConfig
|
56 |
+
|
57 |
+
import transformers
|
58 |
+
transformers.logging.set_verbosity_error()
|
59 |
+
|
60 |
+
|
61 |
+
_CONFIG_FOR_DOC = "BertConfig"
|
62 |
+
_TOKENIZER_FOR_DOC = "BertTokenizer"
|
63 |
+
|
64 |
+
BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
65 |
+
"bert-base-uncased",
|
66 |
+
"bert-large-uncased",
|
67 |
+
"bert-base-cased",
|
68 |
+
"bert-large-cased",
|
69 |
+
"bert-base-multilingual-uncased",
|
70 |
+
"bert-base-multilingual-cased",
|
71 |
+
"bert-base-chinese",
|
72 |
+
"bert-base-german-cased",
|
73 |
+
"bert-large-uncased-whole-word-masking",
|
74 |
+
"bert-large-cased-whole-word-masking",
|
75 |
+
"bert-large-uncased-whole-word-masking-finetuned-squad",
|
76 |
+
"bert-large-cased-whole-word-masking-finetuned-squad",
|
77 |
+
"bert-base-cased-finetuned-mrpc",
|
78 |
+
"bert-base-german-dbmdz-cased",
|
79 |
+
"bert-base-german-dbmdz-uncased",
|
80 |
+
"cl-tohoku/bert-base-japanese",
|
81 |
+
"cl-tohoku/bert-base-japanese-whole-word-masking",
|
82 |
+
"cl-tohoku/bert-base-japanese-char",
|
83 |
+
"cl-tohoku/bert-base-japanese-char-whole-word-masking",
|
84 |
+
"TurkuNLP/bert-base-finnish-cased-v1",
|
85 |
+
"TurkuNLP/bert-base-finnish-uncased-v1",
|
86 |
+
"wietsedv/bert-base-dutch-cased",
|
87 |
+
# See all BERT models at https://huggingface.co/models?filter=bert
|
88 |
+
]
|
89 |
+
|
90 |
+
|
91 |
+
@dataclass
|
92 |
+
class BertModelOutputWithPastAndCrossAttentions(BaseModelOutputWithPastAndCrossAttentions):
|
93 |
+
token_idx: Optional[Tuple[torch.LongTensor]] = None
|
94 |
+
|
95 |
+
|
96 |
+
@dataclass
|
97 |
+
class BertModelOutputWithPoolingAndCrossAttentions(BaseModelOutputWithPoolingAndCrossAttentions):
|
98 |
+
token_idx: Optional[Tuple[torch.LongTensor]] = None
|
99 |
+
|
100 |
+
|
101 |
+
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
|
102 |
+
"""Load tf checkpoints in a pytorch model."""
|
103 |
+
try:
|
104 |
+
import re
|
105 |
+
|
106 |
+
import numpy as np
|
107 |
+
import tensorflow as tf
|
108 |
+
except ImportError:
|
109 |
+
print(
|
110 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
111 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
112 |
+
)
|
113 |
+
raise
|
114 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
115 |
+
# Load weights from TF model
|
116 |
+
init_vars = tf.train.list_variables(tf_path)
|
117 |
+
names = []
|
118 |
+
arrays = []
|
119 |
+
for name, shape in init_vars:
|
120 |
+
array = tf.train.load_variable(tf_path, name)
|
121 |
+
names.append(name)
|
122 |
+
arrays.append(array)
|
123 |
+
|
124 |
+
for name, array in zip(names, arrays):
|
125 |
+
name = name.split("/")
|
126 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
127 |
+
# which are not required for using pretrained model
|
128 |
+
if any(
|
129 |
+
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer",
|
130 |
+
"AdamWeightDecayOptimizer_1", "global_step"]
|
131 |
+
for n in name
|
132 |
+
):
|
133 |
+
continue
|
134 |
+
pointer = model
|
135 |
+
for m_name in name:
|
136 |
+
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
137 |
+
scope_names = re.split(r"_(\d+)", m_name)
|
138 |
+
else:
|
139 |
+
scope_names = [m_name]
|
140 |
+
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
|
141 |
+
pointer = getattr(pointer, "weight")
|
142 |
+
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
143 |
+
pointer = getattr(pointer, "bias")
|
144 |
+
elif scope_names[0] == "output_weights":
|
145 |
+
pointer = getattr(pointer, "weight")
|
146 |
+
elif scope_names[0] == "squad":
|
147 |
+
pointer = getattr(pointer, "classifier")
|
148 |
+
else:
|
149 |
+
try:
|
150 |
+
pointer = getattr(pointer, scope_names[0])
|
151 |
+
except AttributeError:
|
152 |
+
continue
|
153 |
+
if len(scope_names) >= 2:
|
154 |
+
num = int(scope_names[1])
|
155 |
+
pointer = pointer[num]
|
156 |
+
if m_name[-11:] == "_embeddings":
|
157 |
+
pointer = getattr(pointer, "weight")
|
158 |
+
elif m_name == "kernel":
|
159 |
+
array = np.transpose(array)
|
160 |
+
try:
|
161 |
+
assert (
|
162 |
+
pointer.shape == array.shape
|
163 |
+
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
|
164 |
+
except AssertionError as e:
|
165 |
+
e.args += (pointer.shape, array.shape)
|
166 |
+
raise
|
167 |
+
pointer.data = torch.from_numpy(array)
|
168 |
+
return model
|
169 |
+
|
170 |
+
|
171 |
+
class BertEmbeddings(nn.Module):
|
172 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
173 |
+
|
174 |
+
def __init__(self, config):
|
175 |
+
super().__init__()
|
176 |
+
self.word_embeddings = nn.Embedding(
|
177 |
+
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
178 |
+
self.position_embeddings = nn.Embedding(
|
179 |
+
config.max_position_embeddings, config.hidden_size)
|
180 |
+
self.token_type_embeddings = nn.Embedding(
|
181 |
+
config.type_vocab_size, config.hidden_size)
|
182 |
+
|
183 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
184 |
+
# any TensorFlow checkpoint file
|
185 |
+
self.LayerNorm = nn.LayerNorm(
|
186 |
+
config.hidden_size, eps=config.layer_norm_eps)
|
187 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
188 |
+
|
189 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
190 |
+
self.register_buffer("position_ids", torch.arange(
|
191 |
+
config.max_position_embeddings).expand((1, -1)))
|
192 |
+
self.position_embedding_type = getattr(
|
193 |
+
config, "position_embedding_type", "absolute")
|
194 |
+
|
195 |
+
self.config = config
|
196 |
+
|
197 |
+
def forward(
|
198 |
+
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
|
199 |
+
):
|
200 |
+
if input_ids is not None:
|
201 |
+
input_shape = input_ids.size()
|
202 |
+
else:
|
203 |
+
input_shape = inputs_embeds.size()[:-1]
|
204 |
+
|
205 |
+
seq_length = input_shape[1]
|
206 |
+
|
207 |
+
if position_ids is None:
|
208 |
+
position_ids = self.position_ids[:,
|
209 |
+
past_key_values_length: seq_length + past_key_values_length]
|
210 |
+
|
211 |
+
if token_type_ids is None:
|
212 |
+
token_type_ids = torch.zeros(
|
213 |
+
input_shape, dtype=torch.long, device=self.position_ids.device)
|
214 |
+
|
215 |
+
if inputs_embeds is None:
|
216 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
217 |
+
|
218 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
219 |
+
|
220 |
+
embeddings = inputs_embeds + token_type_embeddings
|
221 |
+
if self.position_embedding_type == "absolute":
|
222 |
+
position_embeddings = self.position_embeddings(position_ids)
|
223 |
+
embeddings += position_embeddings
|
224 |
+
embeddings = self.LayerNorm(embeddings)
|
225 |
+
embeddings = self.dropout(embeddings)
|
226 |
+
return embeddings
|
227 |
+
|
228 |
+
|
229 |
+
class BertSelfAttention(nn.Module):
|
230 |
+
def __init__(self, config, is_cross_attention):
|
231 |
+
super().__init__()
|
232 |
+
self.config = config
|
233 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
234 |
+
raise ValueError(
|
235 |
+
"The hidden size (%d) is not a multiple of the number of attention "
|
236 |
+
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
|
237 |
+
)
|
238 |
+
|
239 |
+
self.num_attention_heads = config.num_attention_heads
|
240 |
+
self.attention_head_size = int(
|
241 |
+
config.hidden_size / config.num_attention_heads)
|
242 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
243 |
+
|
244 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
245 |
+
if is_cross_attention:
|
246 |
+
self.key = nn.Linear(config.encoder_width, self.all_head_size)
|
247 |
+
self.value = nn.Linear(config.encoder_width, self.all_head_size)
|
248 |
+
else:
|
249 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
250 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
251 |
+
|
252 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
253 |
+
self.position_embedding_type = getattr(
|
254 |
+
config, "position_embedding_type", "absolute")
|
255 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
256 |
+
self.max_position_embeddings = config.max_position_embeddings
|
257 |
+
self.distance_embedding = nn.Embedding(
|
258 |
+
2 * config.max_position_embeddings - 1, self.attention_head_size)
|
259 |
+
self.save_attention = False
|
260 |
+
|
261 |
+
def save_attn_gradients(self, attn_gradients):
|
262 |
+
self.attn_gradients = attn_gradients
|
263 |
+
|
264 |
+
def get_attn_gradients(self):
|
265 |
+
return self.attn_gradients
|
266 |
+
|
267 |
+
def save_attention_map(self, attention_map):
|
268 |
+
self.attention_map = attention_map
|
269 |
+
|
270 |
+
def get_attention_map(self):
|
271 |
+
return self.attention_map
|
272 |
+
|
273 |
+
def transpose_for_scores(self, x):
|
274 |
+
new_x_shape = x.size()[
|
275 |
+
:-1] + (self.num_attention_heads, self.attention_head_size)
|
276 |
+
x = x.view(*new_x_shape)
|
277 |
+
return x.permute(0, 2, 1, 3)
|
278 |
+
|
279 |
+
def forward(
|
280 |
+
self,
|
281 |
+
hidden_states,
|
282 |
+
attention_mask=None,
|
283 |
+
head_mask=None,
|
284 |
+
encoder_hidden_states=None,
|
285 |
+
encoder_attention_mask=None,
|
286 |
+
past_key_value=None,
|
287 |
+
output_attentions=False,
|
288 |
+
):
|
289 |
+
mixed_query_layer = self.query(hidden_states)
|
290 |
+
|
291 |
+
# If this is instantiated as a cross-attention module, the keys
|
292 |
+
# and values come from an encoder; the attention mask needs to be
|
293 |
+
# such that the encoder's padding tokens are not attended to.
|
294 |
+
is_cross_attention = encoder_hidden_states is not None
|
295 |
+
|
296 |
+
if is_cross_attention:
|
297 |
+
key_layer = self.transpose_for_scores(
|
298 |
+
self.key(encoder_hidden_states))
|
299 |
+
value_layer = self.transpose_for_scores(
|
300 |
+
self.value(encoder_hidden_states))
|
301 |
+
attention_mask = encoder_attention_mask
|
302 |
+
elif past_key_value is not None:
|
303 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
304 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
305 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
306 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
307 |
+
else:
|
308 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
309 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
310 |
+
|
311 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
312 |
+
|
313 |
+
past_key_value = (key_layer, value_layer)
|
314 |
+
|
315 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
316 |
+
attention_scores = torch.matmul(
|
317 |
+
query_layer, key_layer.transpose(-1, -2))
|
318 |
+
|
319 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
320 |
+
seq_length = hidden_states.size()[1]
|
321 |
+
position_ids_l = torch.arange(
|
322 |
+
seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
323 |
+
position_ids_r = torch.arange(
|
324 |
+
seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
325 |
+
distance = position_ids_l - position_ids_r
|
326 |
+
positional_embedding = self.distance_embedding(
|
327 |
+
distance + self.max_position_embeddings - 1)
|
328 |
+
positional_embedding = positional_embedding.to(
|
329 |
+
dtype=query_layer.dtype) # fp16 compatibility
|
330 |
+
|
331 |
+
if self.position_embedding_type == "relative_key":
|
332 |
+
relative_position_scores = torch.einsum(
|
333 |
+
"bhld,lrd->bhlr", query_layer, positional_embedding)
|
334 |
+
attention_scores = attention_scores + relative_position_scores
|
335 |
+
elif self.position_embedding_type == "relative_key_query":
|
336 |
+
relative_position_scores_query = torch.einsum(
|
337 |
+
"bhld,lrd->bhlr", query_layer, positional_embedding)
|
338 |
+
relative_position_scores_key = torch.einsum(
|
339 |
+
"bhrd,lrd->bhlr", key_layer, positional_embedding)
|
340 |
+
attention_scores = attention_scores + \
|
341 |
+
relative_position_scores_query + relative_position_scores_key
|
342 |
+
|
343 |
+
attention_scores = attention_scores / \
|
344 |
+
math.sqrt(self.attention_head_size)
|
345 |
+
if attention_mask is not None:
|
346 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
347 |
+
attention_scores = attention_scores + attention_mask
|
348 |
+
|
349 |
+
# Normalize the attention scores to probabilities.
|
350 |
+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
351 |
+
|
352 |
+
if is_cross_attention and self.save_attention:
|
353 |
+
self.save_attention_map(attention_probs)
|
354 |
+
attention_probs.register_hook(self.save_attn_gradients)
|
355 |
+
|
356 |
+
# This is actually dropping out entire tokens to attend to, which might
|
357 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
358 |
+
attention_probs_dropped = self.dropout(attention_probs)
|
359 |
+
|
360 |
+
# Mask heads if we want to
|
361 |
+
if head_mask is not None:
|
362 |
+
attention_probs_dropped = attention_probs_dropped * head_mask
|
363 |
+
|
364 |
+
context_layer = torch.matmul(attention_probs_dropped, value_layer)
|
365 |
+
|
366 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
367 |
+
new_context_layer_shape = context_layer.size()[
|
368 |
+
:-2] + (self.all_head_size,)
|
369 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
370 |
+
|
371 |
+
# added `attention_scores` to return tuple
|
372 |
+
outputs = (context_layer, attention_probs, attention_scores) if output_attentions else (
|
373 |
+
context_layer,)
|
374 |
+
|
375 |
+
outputs = outputs + (past_key_value,)
|
376 |
+
return outputs
|
377 |
+
|
378 |
+
|
379 |
+
class BertSelfOutput(nn.Module):
|
380 |
+
def __init__(self, config):
|
381 |
+
super().__init__()
|
382 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
383 |
+
self.LayerNorm = nn.LayerNorm(
|
384 |
+
config.hidden_size, eps=config.layer_norm_eps)
|
385 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
386 |
+
|
387 |
+
def forward(self, hidden_states, input_tensor):
|
388 |
+
hidden_states = self.dense(hidden_states)
|
389 |
+
hidden_states = self.dropout(hidden_states)
|
390 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
391 |
+
return hidden_states
|
392 |
+
|
393 |
+
|
394 |
+
class BertAttention(nn.Module):
|
395 |
+
def __init__(self, config, is_cross_attention=False):
|
396 |
+
super().__init__()
|
397 |
+
self.self = BertSelfAttention(config, is_cross_attention)
|
398 |
+
self.output = BertSelfOutput(config)
|
399 |
+
self.pruned_heads = set()
|
400 |
+
|
401 |
+
def prune_heads(self, heads):
|
402 |
+
if len(heads) == 0:
|
403 |
+
return
|
404 |
+
heads, index = find_pruneable_heads_and_indices(
|
405 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
406 |
+
)
|
407 |
+
|
408 |
+
# Prune linear layers
|
409 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
410 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
411 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
412 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
413 |
+
|
414 |
+
# Update hyper params and store pruned heads
|
415 |
+
self.self.num_attention_heads = self.self.num_attention_heads - \
|
416 |
+
len(heads)
|
417 |
+
self.self.all_head_size = self.self.attention_head_size * \
|
418 |
+
self.self.num_attention_heads
|
419 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
420 |
+
|
421 |
+
def forward(
|
422 |
+
self,
|
423 |
+
hidden_states,
|
424 |
+
attention_mask=None,
|
425 |
+
head_mask=None,
|
426 |
+
encoder_hidden_states=None,
|
427 |
+
encoder_attention_mask=None,
|
428 |
+
past_key_value=None,
|
429 |
+
output_attentions=False,
|
430 |
+
):
|
431 |
+
self_outputs = self.self(
|
432 |
+
hidden_states,
|
433 |
+
attention_mask,
|
434 |
+
head_mask,
|
435 |
+
encoder_hidden_states,
|
436 |
+
encoder_attention_mask,
|
437 |
+
past_key_value,
|
438 |
+
output_attentions,
|
439 |
+
)
|
440 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
441 |
+
# add attentions if we output them
|
442 |
+
outputs = (attention_output,) + self_outputs[1:]
|
443 |
+
return outputs # (context_layer, attention_probs, attention_scores, past_key_value,)
|
444 |
+
|
445 |
+
|
446 |
+
class BertIntermediate(nn.Module):
|
447 |
+
def __init__(self, config):
|
448 |
+
super().__init__()
|
449 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
450 |
+
if isinstance(config.hidden_act, str):
|
451 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
452 |
+
else:
|
453 |
+
self.intermediate_act_fn = config.hidden_act
|
454 |
+
|
455 |
+
def forward(self, hidden_states):
|
456 |
+
hidden_states = self.dense(hidden_states)
|
457 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
458 |
+
return hidden_states
|
459 |
+
|
460 |
+
|
461 |
+
class BertOutput(nn.Module):
|
462 |
+
def __init__(self, config):
|
463 |
+
super().__init__()
|
464 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
465 |
+
self.LayerNorm = nn.LayerNorm(
|
466 |
+
config.hidden_size, eps=config.layer_norm_eps)
|
467 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
468 |
+
|
469 |
+
def forward(self, hidden_states, input_tensor):
|
470 |
+
hidden_states = self.dense(hidden_states)
|
471 |
+
hidden_states = self.dropout(hidden_states)
|
472 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
473 |
+
return hidden_states
|
474 |
+
|
475 |
+
|
476 |
+
class BertLayer(nn.Module):
|
477 |
+
def __init__(self, config, layer_num, token_keep_rate=1.0):
|
478 |
+
super().__init__()
|
479 |
+
self.config = config
|
480 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
481 |
+
self.seq_len_dim = 1
|
482 |
+
self.attention = BertAttention(config)
|
483 |
+
|
484 |
+
self.has_cross_attention = (layer_num >= config.fusion_layer)
|
485 |
+
if self.has_cross_attention:
|
486 |
+
self.layer_num = layer_num
|
487 |
+
self.crossattention = BertAttention(
|
488 |
+
config, is_cross_attention=True)
|
489 |
+
|
490 |
+
# sparse params
|
491 |
+
self.token_keep_rate = token_keep_rate
|
492 |
+
self.token_keep_strategy = config.token_keep_strategy
|
493 |
+
self.encoder_num_cls_tokens = 1 # multiple cls tokens
|
494 |
+
|
495 |
+
self.intermediate = BertIntermediate(config)
|
496 |
+
self.output = BertOutput(config)
|
497 |
+
|
498 |
+
def sparsify(self, x, attn, mask=None):
|
499 |
+
x_cls, x_ = x[:, :self.encoder_num_cls_tokens], x[:, self.encoder_num_cls_tokens:]
|
500 |
+
assert 0 < self.token_keep_rate <= 1, "Expected keep rate in range (0, 1]"
|
501 |
+
left_tokens = math.ceil(self.token_keep_rate * x_.size(1))
|
502 |
+
if len(attn.shape) == 4:
|
503 |
+
attn = attn.mean(1) # pool over attention heads
|
504 |
+
|
505 |
+
if self.token_keep_strategy == 'cls_attn':
|
506 |
+
cls_attn = attn[:, 0, self.encoder_num_cls_tokens:]
|
507 |
+
_, idx = torch.topk(cls_attn, left_tokens, dim=1) # [B, left_tokens]
|
508 |
+
|
509 |
+
elif self.token_keep_strategy == 'avg_attn':
|
510 |
+
avg_attn = attn.mean(1)[:, self.encoder_num_cls_tokens:]
|
511 |
+
_, idx = torch.topk(avg_attn, left_tokens, dim=1) # [B, left_tokens]
|
512 |
+
|
513 |
+
elif self.token_keep_strategy == 'random':
|
514 |
+
rand = torch.rand(x_.shape[:2], device=x_.device)
|
515 |
+
_, idx = torch.topk(rand, left_tokens, dim=1) # [B, left_tokens]
|
516 |
+
|
517 |
+
else:
|
518 |
+
raise NotImplementedError(f"Sparse strategy {self.token_keep_strategy} is not implemented")
|
519 |
+
|
520 |
+
idx, _ = torch.sort(idx, dim=1)
|
521 |
+
index = idx.unsqueeze(-1).expand(-1, -1, x_.size(-1)) # [B, left_tokens, C]
|
522 |
+
outputs = torch.cat((x_cls, x_.gather(1, index)), dim=1).contiguous()
|
523 |
+
if mask is not None:
|
524 |
+
mask_cls, mask_ = mask[..., :self.encoder_num_cls_tokens], mask[..., self.encoder_num_cls_tokens:]
|
525 |
+
index = idx.unsqueeze(1).unsqueeze(1) # [B, 1, 1, left_tokens]
|
526 |
+
mask = torch.cat((mask_cls, mask_.gather(-1, index)), dim=-1).contiguous()
|
527 |
+
return outputs, mask, idx
|
528 |
+
|
529 |
+
def forward(
|
530 |
+
self,
|
531 |
+
hidden_states,
|
532 |
+
attention_mask=None,
|
533 |
+
head_mask=None,
|
534 |
+
encoder_hidden_states=None,
|
535 |
+
encoder_attention_mask=None,
|
536 |
+
past_key_value=None,
|
537 |
+
output_attentions=False,
|
538 |
+
):
|
539 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
540 |
+
self_attn_past_key_value = past_key_value[:
|
541 |
+
2] if past_key_value is not None else None
|
542 |
+
self_attention_outputs = self.attention(
|
543 |
+
hidden_states,
|
544 |
+
attention_mask,
|
545 |
+
head_mask,
|
546 |
+
output_attentions=output_attentions,
|
547 |
+
past_key_value=self_attn_past_key_value,
|
548 |
+
) # (context_layer, attention_probs, attention_scores, past_key_value,)
|
549 |
+
attention_output = self_attention_outputs[0]
|
550 |
+
|
551 |
+
outputs = self_attention_outputs[1:-1]
|
552 |
+
present_key_value = self_attention_outputs[-1]
|
553 |
+
|
554 |
+
if self.has_cross_attention:
|
555 |
+
assert encoder_hidden_states is not None, "encoder_hidden_states must be given for cross-attention layers"
|
556 |
+
output_attentions = (output_attentions or self.token_keep_rate < 1)
|
557 |
+
|
558 |
+
if type(encoder_hidden_states) == list:
|
559 |
+
cross_attention_outputs = self.crossattention(
|
560 |
+
attention_output,
|
561 |
+
attention_mask,
|
562 |
+
head_mask,
|
563 |
+
encoder_hidden_states[(
|
564 |
+
self.layer_num-self.config.fusion_layer) % len(encoder_hidden_states)],
|
565 |
+
encoder_attention_mask[(
|
566 |
+
self.layer_num-self.config.fusion_layer) % len(encoder_hidden_states)],
|
567 |
+
output_attentions=output_attentions,
|
568 |
+
)
|
569 |
+
attention_output = cross_attention_outputs[0]
|
570 |
+
outputs = outputs + cross_attention_outputs[1:-1]
|
571 |
+
|
572 |
+
else:
|
573 |
+
cross_attention_outputs = self.crossattention(
|
574 |
+
attention_output,
|
575 |
+
attention_mask,
|
576 |
+
head_mask,
|
577 |
+
encoder_hidden_states,
|
578 |
+
encoder_attention_mask,
|
579 |
+
output_attentions=output_attentions,
|
580 |
+
) # (context_layer, attention_probs, attention_scores, past_key_value,)
|
581 |
+
attention_output = cross_attention_outputs[0]
|
582 |
+
|
583 |
+
# add cross attentions if we output attention weights
|
584 |
+
outputs = outputs + cross_attention_outputs[1:-1]
|
585 |
+
|
586 |
+
# node sparsification
|
587 |
+
if self.token_keep_rate < 1:
|
588 |
+
encoder_hidden_states, encoder_attention_mask, token_keep_idx = self.sparsify(
|
589 |
+
encoder_hidden_states, cross_attention_outputs[1], encoder_attention_mask)
|
590 |
+
outputs = outputs + (encoder_hidden_states, encoder_attention_mask, token_keep_idx)
|
591 |
+
|
592 |
+
layer_output = apply_chunking_to_forward(
|
593 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
594 |
+
)
|
595 |
+
outputs = (layer_output,) + outputs
|
596 |
+
|
597 |
+
outputs = outputs + (present_key_value,)
|
598 |
+
|
599 |
+
return outputs
|
600 |
+
|
601 |
+
def feed_forward_chunk(self, attention_output):
|
602 |
+
intermediate_output = self.intermediate(attention_output)
|
603 |
+
layer_output = self.output(intermediate_output, attention_output)
|
604 |
+
return layer_output
|
605 |
+
|
606 |
+
|
607 |
+
class BertEncoder(nn.Module):
|
608 |
+
def __init__(self, config):
|
609 |
+
super().__init__()
|
610 |
+
self.config = config
|
611 |
+
|
612 |
+
# node sparsification
|
613 |
+
token_keep_rate = [1] * config.num_hidden_layers
|
614 |
+
for loc in config.token_drop_loc:
|
615 |
+
token_keep_rate[loc] = config.token_keep_rate
|
616 |
+
|
617 |
+
self.layer = nn.ModuleList([BertLayer(config, i, token_keep_rate[i])
|
618 |
+
for i in range(config.num_hidden_layers)])
|
619 |
+
|
620 |
+
def forward(
|
621 |
+
self,
|
622 |
+
hidden_states,
|
623 |
+
attention_mask=None,
|
624 |
+
head_mask=None,
|
625 |
+
encoder_hidden_states=None,
|
626 |
+
encoder_attention_mask=None,
|
627 |
+
past_key_values=None,
|
628 |
+
use_cache=None,
|
629 |
+
output_attentions=False,
|
630 |
+
output_hidden_states=False,
|
631 |
+
output_token_idx=False,
|
632 |
+
return_dict=True,
|
633 |
+
mode='multi_modal',
|
634 |
+
normalize_attention=True
|
635 |
+
):
|
636 |
+
all_hidden_states = () if output_hidden_states else None
|
637 |
+
all_self_attentions = () if output_attentions else None
|
638 |
+
all_cross_attentions = () if output_attentions else None
|
639 |
+
all_token_idx = () if output_token_idx else None
|
640 |
+
|
641 |
+
next_decoder_cache = () if use_cache else None
|
642 |
+
|
643 |
+
if mode == 'text':
|
644 |
+
start_layer = 0
|
645 |
+
output_layer = self.config.fusion_layer
|
646 |
+
|
647 |
+
elif mode == 'fusion':
|
648 |
+
start_layer = self.config.fusion_layer
|
649 |
+
output_layer = self.config.num_hidden_layers
|
650 |
+
|
651 |
+
elif mode == 'multi_modal':
|
652 |
+
start_layer = 0
|
653 |
+
output_layer = self.config.num_hidden_layers
|
654 |
+
|
655 |
+
for i in range(start_layer, output_layer):
|
656 |
+
layer_module = self.layer[i]
|
657 |
+
if output_hidden_states:
|
658 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
659 |
+
|
660 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
661 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
662 |
+
|
663 |
+
if getattr(self.config, "gradient_checkpointing", False) and self.training:
|
664 |
+
|
665 |
+
if use_cache:
|
666 |
+
use_cache = False
|
667 |
+
|
668 |
+
def create_custom_forward(module):
|
669 |
+
def custom_forward(*inputs):
|
670 |
+
return module(*inputs, past_key_value, output_attentions)
|
671 |
+
|
672 |
+
return custom_forward
|
673 |
+
|
674 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
675 |
+
create_custom_forward(layer_module),
|
676 |
+
hidden_states,
|
677 |
+
attention_mask,
|
678 |
+
layer_head_mask,
|
679 |
+
encoder_hidden_states,
|
680 |
+
encoder_attention_mask,
|
681 |
+
)
|
682 |
+
else:
|
683 |
+
layer_outputs = layer_module(
|
684 |
+
hidden_states,
|
685 |
+
attention_mask,
|
686 |
+
layer_head_mask,
|
687 |
+
encoder_hidden_states,
|
688 |
+
encoder_attention_mask,
|
689 |
+
past_key_value,
|
690 |
+
output_attentions,
|
691 |
+
) # (context_layer, attention_probs, attention_scores, past_key_value,)
|
692 |
+
hidden_states = layer_outputs[0]
|
693 |
+
# update visual sequence
|
694 |
+
if mode == 'fusion' and layer_module.token_keep_rate < 1:
|
695 |
+
encoder_hidden_states, encoder_attention_mask, token_idx = layer_outputs[-4:-1]
|
696 |
+
|
697 |
+
if output_token_idx:
|
698 |
+
all_token_idx = all_token_idx + (token_idx,)
|
699 |
+
|
700 |
+
if use_cache:
|
701 |
+
next_decoder_cache += (layer_outputs[-1],)
|
702 |
+
if output_attentions:
|
703 |
+
# whether to output normalized attention,
|
704 |
+
# note for unnormalized attention, there is a mask added
|
705 |
+
offset = int(normalize_attention)
|
706 |
+
all_self_attentions = all_self_attentions + (layer_outputs[2-offset], )
|
707 |
+
if hasattr(layer_module, "crossattention"):
|
708 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[4-offset], )
|
709 |
+
|
710 |
+
if output_hidden_states:
|
711 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
712 |
+
|
713 |
+
if not return_dict:
|
714 |
+
return tuple(
|
715 |
+
v
|
716 |
+
for v in [
|
717 |
+
hidden_states,
|
718 |
+
next_decoder_cache,
|
719 |
+
all_hidden_states,
|
720 |
+
all_self_attentions,
|
721 |
+
all_cross_attentions,
|
722 |
+
]
|
723 |
+
if v is not None
|
724 |
+
)
|
725 |
+
return BertModelOutputWithPastAndCrossAttentions(
|
726 |
+
last_hidden_state=hidden_states,
|
727 |
+
past_key_values=next_decoder_cache,
|
728 |
+
hidden_states=all_hidden_states,
|
729 |
+
attentions=all_self_attentions,
|
730 |
+
cross_attentions=all_cross_attentions,
|
731 |
+
token_idx=all_token_idx
|
732 |
+
)
|
733 |
+
|
734 |
+
|
735 |
+
class BertPooler(nn.Module):
|
736 |
+
def __init__(self, config):
|
737 |
+
super().__init__()
|
738 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
739 |
+
self.activation = nn.Tanh()
|
740 |
+
|
741 |
+
def forward(self, hidden_states):
|
742 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
743 |
+
# to the first token.
|
744 |
+
first_token_tensor = hidden_states[:, 0]
|
745 |
+
pooled_output = self.dense(first_token_tensor)
|
746 |
+
pooled_output = self.activation(pooled_output)
|
747 |
+
return pooled_output
|
748 |
+
|
749 |
+
|
750 |
+
class BertPredictionHeadTransform(nn.Module):
|
751 |
+
def __init__(self, config):
|
752 |
+
super().__init__()
|
753 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
754 |
+
if isinstance(config.hidden_act, str):
|
755 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
756 |
+
else:
|
757 |
+
self.transform_act_fn = config.hidden_act
|
758 |
+
self.LayerNorm = nn.LayerNorm(
|
759 |
+
config.hidden_size, eps=config.layer_norm_eps)
|
760 |
+
|
761 |
+
def forward(self, hidden_states):
|
762 |
+
hidden_states = self.dense(hidden_states)
|
763 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
764 |
+
hidden_states = self.LayerNorm(hidden_states)
|
765 |
+
return hidden_states
|
766 |
+
|
767 |
+
|
768 |
+
class BertLMPredictionHead(nn.Module):
|
769 |
+
def __init__(self, config):
|
770 |
+
super().__init__()
|
771 |
+
self.transform = BertPredictionHeadTransform(config)
|
772 |
+
|
773 |
+
# The output weights are the same as the input embeddings, but there is
|
774 |
+
# an output-only bias for each token.
|
775 |
+
self.decoder = nn.Linear(
|
776 |
+
config.hidden_size, config.vocab_size, bias=False)
|
777 |
+
|
778 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
779 |
+
|
780 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
781 |
+
self.decoder.bias = self.bias
|
782 |
+
|
783 |
+
def forward(self, hidden_states):
|
784 |
+
hidden_states = self.transform(hidden_states)
|
785 |
+
hidden_states = self.decoder(hidden_states)
|
786 |
+
return hidden_states
|
787 |
+
|
788 |
+
|
789 |
+
class BertOnlyMLMHead(nn.Module):
|
790 |
+
def __init__(self, config):
|
791 |
+
super().__init__()
|
792 |
+
self.predictions = BertLMPredictionHead(config)
|
793 |
+
|
794 |
+
def forward(self, sequence_output):
|
795 |
+
prediction_scores = self.predictions(sequence_output)
|
796 |
+
return prediction_scores
|
797 |
+
|
798 |
+
|
799 |
+
class BertOnlyNSPHead(nn.Module):
|
800 |
+
def __init__(self, config):
|
801 |
+
super().__init__()
|
802 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
803 |
+
|
804 |
+
def forward(self, pooled_output):
|
805 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
806 |
+
return seq_relationship_score
|
807 |
+
|
808 |
+
|
809 |
+
class BertPreTrainingHeads(nn.Module):
|
810 |
+
def __init__(self, config):
|
811 |
+
super().__init__()
|
812 |
+
self.predictions = BertLMPredictionHead(config)
|
813 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
814 |
+
|
815 |
+
def forward(self, sequence_output, pooled_output):
|
816 |
+
prediction_scores = self.predictions(sequence_output)
|
817 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
818 |
+
return prediction_scores, seq_relationship_score
|
819 |
+
|
820 |
+
|
821 |
+
class BertPreTrainedModel(PreTrainedModel):
|
822 |
+
"""
|
823 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
824 |
+
models.
|
825 |
+
"""
|
826 |
+
|
827 |
+
config_class = BertConfig
|
828 |
+
load_tf_weights = load_tf_weights_in_bert
|
829 |
+
base_model_prefix = "bert"
|
830 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
831 |
+
|
832 |
+
def _init_weights(self, module):
|
833 |
+
""" Initialize the weights """
|
834 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
835 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
836 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
837 |
+
module.weight.data.normal_(
|
838 |
+
mean=0.0, std=self.config.initializer_range)
|
839 |
+
elif isinstance(module, nn.LayerNorm):
|
840 |
+
module.bias.data.zero_()
|
841 |
+
module.weight.data.fill_(1.0)
|
842 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
843 |
+
module.bias.data.zero_()
|
844 |
+
|
845 |
+
|
846 |
+
@dataclass
|
847 |
+
class BertForPreTrainingOutput(ModelOutput):
|
848 |
+
"""
|
849 |
+
Output type of :class:`~transformers.BertForPreTraining`.
|
850 |
+
Args:
|
851 |
+
loss (`optional`, returned when ``labels`` is provided, ``torch.FloatTensor`` of shape :obj:`(1,)`):
|
852 |
+
Total loss as the sum of the masked language modeling loss and the next sequence prediction
|
853 |
+
(classification) loss.
|
854 |
+
prediction_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
|
855 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
856 |
+
seq_relationship_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`):
|
857 |
+
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
|
858 |
+
before SoftMax).
|
859 |
+
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
860 |
+
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
861 |
+
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
862 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
863 |
+
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
864 |
+
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
|
865 |
+
sequence_length, sequence_length)`.
|
866 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
867 |
+
heads.
|
868 |
+
"""
|
869 |
+
|
870 |
+
loss: Optional[torch.FloatTensor] = None
|
871 |
+
prediction_logits: torch.FloatTensor = None
|
872 |
+
seq_relationship_logits: torch.FloatTensor = None
|
873 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
874 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
875 |
+
|
876 |
+
|
877 |
+
BERT_START_DOCSTRING = r"""
|
878 |
+
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
|
879 |
+
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
|
880 |
+
pruning heads etc.)
|
881 |
+
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
|
882 |
+
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
|
883 |
+
general usage and behavior.
|
884 |
+
Parameters:
|
885 |
+
config (:class:`~transformers.BertConfig`): Model configuration class with all the parameters of the model.
|
886 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
887 |
+
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
|
888 |
+
weights.
|
889 |
+
"""
|
890 |
+
|
891 |
+
BERT_INPUTS_DOCSTRING = r"""
|
892 |
+
Args:
|
893 |
+
input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`):
|
894 |
+
Indices of input sequence tokens in the vocabulary.
|
895 |
+
Indices can be obtained using :class:`~transformers.BertTokenizer`. See
|
896 |
+
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
|
897 |
+
details.
|
898 |
+
`What are input IDs? <../glossary.html#input-ids>`__
|
899 |
+
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`):
|
900 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
901 |
+
- 1 for tokens that are **not masked**,
|
902 |
+
- 0 for tokens that are **masked**.
|
903 |
+
`What are attention masks? <../glossary.html#attention-mask>`__
|
904 |
+
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
|
905 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
|
906 |
+
1]``:
|
907 |
+
- 0 corresponds to a `sentence A` token,
|
908 |
+
- 1 corresponds to a `sentence B` token.
|
909 |
+
`What are token type IDs? <../glossary.html#token-type-ids>`_
|
910 |
+
position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
|
911 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
|
912 |
+
config.max_position_embeddings - 1]``.
|
913 |
+
`What are position IDs? <../glossary.html#position-ids>`_
|
914 |
+
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
|
915 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:
|
916 |
+
- 1 indicates the head is **not masked**,
|
917 |
+
- 0 indicates the head is **masked**.
|
918 |
+
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`):
|
919 |
+
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
|
920 |
+
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
|
921 |
+
vectors than the model's internal embedding lookup matrix.
|
922 |
+
output_attentions (:obj:`bool`, `optional`):
|
923 |
+
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
|
924 |
+
tensors for more detail.
|
925 |
+
output_hidden_states (:obj:`bool`, `optional`):
|
926 |
+
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
|
927 |
+
more detail.
|
928 |
+
return_dict (:obj:`bool`, `optional`):
|
929 |
+
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
|
930 |
+
"""
|
931 |
+
|
932 |
+
|
933 |
+
@add_start_docstrings(
|
934 |
+
"The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
|
935 |
+
BERT_START_DOCSTRING,
|
936 |
+
)
|
937 |
+
class BertModel(BertPreTrainedModel):
|
938 |
+
"""
|
939 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
940 |
+
cross-attention is added between the self-attention layers, following the architecture described in `Attention is
|
941 |
+
all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
942 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
943 |
+
argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
|
944 |
+
input to the forward pass.
|
945 |
+
"""
|
946 |
+
|
947 |
+
def __init__(self, config, add_pooling_layer=True):
|
948 |
+
super().__init__(config)
|
949 |
+
self.config = config
|
950 |
+
|
951 |
+
self.embeddings = BertEmbeddings(config)
|
952 |
+
|
953 |
+
self.encoder = BertEncoder(config)
|
954 |
+
|
955 |
+
self.pooler = BertPooler(config) if add_pooling_layer else None
|
956 |
+
|
957 |
+
self.init_weights()
|
958 |
+
|
959 |
+
def get_input_embeddings(self):
|
960 |
+
return self.embeddings.word_embeddings
|
961 |
+
|
962 |
+
def set_input_embeddings(self, value):
|
963 |
+
self.embeddings.word_embeddings = value
|
964 |
+
|
965 |
+
def _prune_heads(self, heads_to_prune):
|
966 |
+
"""
|
967 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
968 |
+
class PreTrainedModel
|
969 |
+
"""
|
970 |
+
for layer, heads in heads_to_prune.items():
|
971 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
972 |
+
|
973 |
+
def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool) -> Tensor:
|
974 |
+
"""
|
975 |
+
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
|
976 |
+
|
977 |
+
Arguments:
|
978 |
+
attention_mask (:obj:`torch.Tensor`):
|
979 |
+
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
|
980 |
+
input_shape (:obj:`Tuple[int]`):
|
981 |
+
The shape of the input to the model.
|
982 |
+
device: (:obj:`torch.device`):
|
983 |
+
The device of the input to the model.
|
984 |
+
|
985 |
+
Returns:
|
986 |
+
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
|
987 |
+
"""
|
988 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
989 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
990 |
+
if attention_mask.dim() == 3:
|
991 |
+
extended_attention_mask = attention_mask[:, None, :, :]
|
992 |
+
elif attention_mask.dim() == 2:
|
993 |
+
# Provided a padding mask of dimensions [batch_size, seq_length]
|
994 |
+
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
995 |
+
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
996 |
+
if is_decoder:
|
997 |
+
batch_size, seq_length = input_shape
|
998 |
+
seq_ids = torch.arange(seq_length, device=device)
|
999 |
+
causal_mask = seq_ids[None, None, :].repeat(
|
1000 |
+
batch_size, seq_length, 1) <= seq_ids[None, :, None]
|
1001 |
+
# in case past_key_values are used we need to add a prefix ones mask to the causal mask
|
1002 |
+
# causal and attention masks must have same type with pytorch version < 1.3
|
1003 |
+
causal_mask = causal_mask.to(attention_mask.dtype)
|
1004 |
+
|
1005 |
+
if causal_mask.shape[1] < attention_mask.shape[1]:
|
1006 |
+
prefix_seq_len = attention_mask.shape[1] - \
|
1007 |
+
causal_mask.shape[1]
|
1008 |
+
causal_mask = torch.cat(
|
1009 |
+
[
|
1010 |
+
torch.ones(
|
1011 |
+
(batch_size, seq_length,
|
1012 |
+
prefix_seq_len), device=device, dtype=causal_mask.dtype
|
1013 |
+
),
|
1014 |
+
causal_mask,
|
1015 |
+
],
|
1016 |
+
axis=-1,
|
1017 |
+
)
|
1018 |
+
|
1019 |
+
extended_attention_mask = causal_mask[:, None,
|
1020 |
+
:, :] * attention_mask[:, None, None, :]
|
1021 |
+
else:
|
1022 |
+
extended_attention_mask = attention_mask[:, None, None, :]
|
1023 |
+
else:
|
1024 |
+
raise ValueError(
|
1025 |
+
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
|
1026 |
+
input_shape, attention_mask.shape
|
1027 |
+
)
|
1028 |
+
)
|
1029 |
+
|
1030 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
1031 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
1032 |
+
# positions we want to attend and -10000.0 for masked positions.
|
1033 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
1034 |
+
# effectively the same as removing these entirely.
|
1035 |
+
extended_attention_mask = extended_attention_mask.to(
|
1036 |
+
dtype=self.dtype) # fp16 compatibility
|
1037 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
1038 |
+
return extended_attention_mask
|
1039 |
+
|
1040 |
+
def forward(
|
1041 |
+
self,
|
1042 |
+
input_ids=None,
|
1043 |
+
attention_mask=None,
|
1044 |
+
token_type_ids=None,
|
1045 |
+
position_ids=None,
|
1046 |
+
head_mask=None,
|
1047 |
+
inputs_embeds=None,
|
1048 |
+
encoder_embeds=None,
|
1049 |
+
encoder_hidden_states=None,
|
1050 |
+
encoder_attention_mask=None,
|
1051 |
+
past_key_values=None,
|
1052 |
+
use_cache=None,
|
1053 |
+
output_attentions=None,
|
1054 |
+
output_hidden_states=None,
|
1055 |
+
output_token_idx=None,
|
1056 |
+
return_dict=None,
|
1057 |
+
is_decoder=False,
|
1058 |
+
mode='multi_modal',
|
1059 |
+
normalize_attention=True,
|
1060 |
+
):
|
1061 |
+
r"""
|
1062 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
1063 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
1064 |
+
the model is configured as a decoder.
|
1065 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1066 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1067 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
1068 |
+
- 1 for tokens that are **not masked**,
|
1069 |
+
- 0 for tokens that are **masked**.
|
1070 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
1071 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1072 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
1073 |
+
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
1074 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
1075 |
+
use_cache (:obj:`bool`, `optional`):
|
1076 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
1077 |
+
decoding (see :obj:`past_key_values`).
|
1078 |
+
"""
|
1079 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1080 |
+
output_hidden_states = (
|
1081 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1082 |
+
)
|
1083 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1084 |
+
|
1085 |
+
if is_decoder:
|
1086 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1087 |
+
else:
|
1088 |
+
use_cache = False
|
1089 |
+
|
1090 |
+
if input_ids is not None and inputs_embeds is not None:
|
1091 |
+
raise ValueError(
|
1092 |
+
"You cannot specify both input_ids and inputs_embeds at the same time")
|
1093 |
+
elif input_ids is not None:
|
1094 |
+
input_shape = input_ids.size()
|
1095 |
+
batch_size, seq_length = input_shape
|
1096 |
+
device = input_ids.device
|
1097 |
+
elif inputs_embeds is not None:
|
1098 |
+
input_shape = inputs_embeds.size()[:-1]
|
1099 |
+
batch_size, seq_length = input_shape
|
1100 |
+
device = inputs_embeds.device
|
1101 |
+
elif encoder_embeds is not None:
|
1102 |
+
input_shape = encoder_embeds.size()[:-1]
|
1103 |
+
batch_size, seq_length = input_shape
|
1104 |
+
device = encoder_embeds.device
|
1105 |
+
else:
|
1106 |
+
raise ValueError(
|
1107 |
+
"You have to specify either input_ids or inputs_embeds or encoder_embeds")
|
1108 |
+
|
1109 |
+
# past_key_values_length
|
1110 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
1111 |
+
|
1112 |
+
if attention_mask is None:
|
1113 |
+
attention_mask = torch.ones(
|
1114 |
+
((batch_size, seq_length + past_key_values_length)), device=device)
|
1115 |
+
if token_type_ids is None:
|
1116 |
+
token_type_ids = torch.zeros(
|
1117 |
+
input_shape, dtype=torch.long, device=device)
|
1118 |
+
|
1119 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
1120 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
1121 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape,
|
1122 |
+
device, is_decoder)
|
1123 |
+
|
1124 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
1125 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
1126 |
+
if encoder_hidden_states is not None:
|
1127 |
+
if type(encoder_hidden_states) == list:
|
1128 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size(
|
1129 |
+
)
|
1130 |
+
else:
|
1131 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
1132 |
+
encoder_hidden_shape = (
|
1133 |
+
encoder_batch_size, encoder_sequence_length)
|
1134 |
+
|
1135 |
+
if type(encoder_attention_mask) == list:
|
1136 |
+
encoder_extended_attention_mask = [
|
1137 |
+
self.invert_attention_mask(mask) for mask in encoder_attention_mask]
|
1138 |
+
elif encoder_attention_mask is None:
|
1139 |
+
encoder_attention_mask = torch.ones(
|
1140 |
+
encoder_hidden_shape, device=device)
|
1141 |
+
encoder_extended_attention_mask = self.invert_attention_mask(
|
1142 |
+
encoder_attention_mask)
|
1143 |
+
else:
|
1144 |
+
encoder_extended_attention_mask = self.invert_attention_mask(
|
1145 |
+
encoder_attention_mask)
|
1146 |
+
else:
|
1147 |
+
encoder_extended_attention_mask = None
|
1148 |
+
|
1149 |
+
# Prepare head mask if needed
|
1150 |
+
# 1.0 in head_mask indicate we keep the head
|
1151 |
+
# attention_probs has shape bsz x n_heads x N x N
|
1152 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
1153 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
1154 |
+
head_mask = self.get_head_mask(
|
1155 |
+
head_mask, self.config.num_hidden_layers)
|
1156 |
+
|
1157 |
+
if encoder_embeds is None:
|
1158 |
+
embedding_output = self.embeddings(
|
1159 |
+
input_ids=input_ids,
|
1160 |
+
position_ids=position_ids,
|
1161 |
+
token_type_ids=token_type_ids,
|
1162 |
+
inputs_embeds=inputs_embeds,
|
1163 |
+
past_key_values_length=past_key_values_length,
|
1164 |
+
)
|
1165 |
+
else:
|
1166 |
+
embedding_output = encoder_embeds
|
1167 |
+
|
1168 |
+
encoder_outputs = self.encoder(
|
1169 |
+
embedding_output,
|
1170 |
+
attention_mask=extended_attention_mask,
|
1171 |
+
head_mask=head_mask,
|
1172 |
+
encoder_hidden_states=encoder_hidden_states,
|
1173 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
1174 |
+
past_key_values=past_key_values,
|
1175 |
+
use_cache=use_cache,
|
1176 |
+
output_attentions=output_attentions,
|
1177 |
+
output_hidden_states=output_hidden_states,
|
1178 |
+
output_token_idx=output_token_idx,
|
1179 |
+
return_dict=return_dict,
|
1180 |
+
mode=mode,
|
1181 |
+
normalize_attention=normalize_attention,
|
1182 |
+
|
1183 |
+
)
|
1184 |
+
sequence_output = encoder_outputs[0]
|
1185 |
+
pooled_output = self.pooler(
|
1186 |
+
sequence_output) if self.pooler is not None else None
|
1187 |
+
|
1188 |
+
if not return_dict:
|
1189 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
1190 |
+
|
1191 |
+
return BertModelOutputWithPoolingAndCrossAttentions(
|
1192 |
+
last_hidden_state=sequence_output,
|
1193 |
+
pooler_output=pooled_output,
|
1194 |
+
past_key_values=encoder_outputs.past_key_values,
|
1195 |
+
hidden_states=encoder_outputs.hidden_states,
|
1196 |
+
attentions=encoder_outputs.attentions,
|
1197 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
1198 |
+
token_idx=encoder_outputs.token_idx,
|
1199 |
+
)
|
1200 |
+
|
1201 |
+
|
1202 |
+
@add_start_docstrings(
|
1203 |
+
"""
|
1204 |
+
Bert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next
|
1205 |
+
sentence prediction (classification)` head.
|
1206 |
+
""",
|
1207 |
+
BERT_START_DOCSTRING,
|
1208 |
+
)
|
1209 |
+
class BertForPreTraining(BertPreTrainedModel):
|
1210 |
+
def __init__(self, config):
|
1211 |
+
super().__init__(config)
|
1212 |
+
|
1213 |
+
self.bert = BertModel(config)
|
1214 |
+
self.cls = BertPreTrainingHeads(config)
|
1215 |
+
|
1216 |
+
self.init_weights()
|
1217 |
+
|
1218 |
+
def get_output_embeddings(self):
|
1219 |
+
return self.cls.predictions.decoder
|
1220 |
+
|
1221 |
+
def set_output_embeddings(self, new_embeddings):
|
1222 |
+
self.cls.predictions.decoder = new_embeddings
|
1223 |
+
|
1224 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1225 |
+
@replace_return_docstrings(output_type=BertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
1226 |
+
def forward(
|
1227 |
+
self,
|
1228 |
+
input_ids=None,
|
1229 |
+
attention_mask=None,
|
1230 |
+
token_type_ids=None,
|
1231 |
+
position_ids=None,
|
1232 |
+
head_mask=None,
|
1233 |
+
inputs_embeds=None,
|
1234 |
+
labels=None,
|
1235 |
+
next_sentence_label=None,
|
1236 |
+
output_attentions=None,
|
1237 |
+
output_hidden_states=None,
|
1238 |
+
return_dict=None,
|
1239 |
+
):
|
1240 |
+
r"""
|
1241 |
+
labels (:obj:`torch.LongTensor` of shape ``(batch_size, sequence_length)``, `optional`):
|
1242 |
+
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
|
1243 |
+
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
|
1244 |
+
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
|
1245 |
+
next_sentence_label (``torch.LongTensor`` of shape ``(batch_size,)``, `optional`):
|
1246 |
+
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
|
1247 |
+
(see :obj:`input_ids` docstring) Indices should be in ``[0, 1]``:
|
1248 |
+
- 0 indicates sequence B is a continuation of sequence A,
|
1249 |
+
- 1 indicates sequence B is a random sequence.
|
1250 |
+
kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`):
|
1251 |
+
Used to hide legacy arguments that have been deprecated.
|
1252 |
+
Returns:
|
1253 |
+
Example::
|
1254 |
+
>>> from transformers import BertTokenizer, BertForPreTraining
|
1255 |
+
>>> import torch
|
1256 |
+
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
1257 |
+
>>> model = BertForPreTraining.from_pretrained('bert-base-uncased')
|
1258 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
1259 |
+
>>> outputs = model(**inputs)
|
1260 |
+
>>> prediction_logits = outputs.prediction_logits
|
1261 |
+
>>> seq_relationship_logits = outputs.seq_relationship_logits
|
1262 |
+
"""
|
1263 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1264 |
+
|
1265 |
+
outputs = self.bert(
|
1266 |
+
input_ids,
|
1267 |
+
attention_mask=attention_mask,
|
1268 |
+
token_type_ids=token_type_ids,
|
1269 |
+
position_ids=position_ids,
|
1270 |
+
head_mask=head_mask,
|
1271 |
+
inputs_embeds=inputs_embeds,
|
1272 |
+
output_attentions=output_attentions,
|
1273 |
+
output_hidden_states=output_hidden_states,
|
1274 |
+
return_dict=return_dict,
|
1275 |
+
)
|
1276 |
+
|
1277 |
+
sequence_output, pooled_output = outputs[:2]
|
1278 |
+
prediction_scores, seq_relationship_score = self.cls(
|
1279 |
+
sequence_output, pooled_output)
|
1280 |
+
|
1281 |
+
total_loss = None
|
1282 |
+
if labels is not None and next_sentence_label is not None:
|
1283 |
+
loss_fct = CrossEntropyLoss()
|
1284 |
+
masked_lm_loss = loss_fct(
|
1285 |
+
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1286 |
+
next_sentence_loss = loss_fct(
|
1287 |
+
seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
|
1288 |
+
total_loss = masked_lm_loss + next_sentence_loss
|
1289 |
+
|
1290 |
+
if not return_dict:
|
1291 |
+
output = (prediction_scores, seq_relationship_score) + outputs[2:]
|
1292 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1293 |
+
|
1294 |
+
return BertForPreTrainingOutput(
|
1295 |
+
loss=total_loss,
|
1296 |
+
prediction_logits=prediction_scores,
|
1297 |
+
seq_relationship_logits=seq_relationship_score,
|
1298 |
+
hidden_states=outputs.hidden_states,
|
1299 |
+
attentions=outputs.attentions,
|
1300 |
+
)
|
1301 |
+
|
1302 |
+
|
1303 |
+
@add_start_docstrings(
|
1304 |
+
"""Bert Model with a `language modeling` head on top for CLM fine-tuning. """, BERT_START_DOCSTRING
|
1305 |
+
)
|
1306 |
+
class BertLMHeadModel(BertPreTrainedModel):
|
1307 |
+
|
1308 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1309 |
+
_keys_to_ignore_on_load_missing = [
|
1310 |
+
r"position_ids", r"predictions.decoder.bias"]
|
1311 |
+
|
1312 |
+
def __init__(self, config):
|
1313 |
+
super().__init__(config)
|
1314 |
+
|
1315 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
1316 |
+
self.cls = BertOnlyMLMHead(config)
|
1317 |
+
|
1318 |
+
self.init_weights()
|
1319 |
+
|
1320 |
+
def get_output_embeddings(self):
|
1321 |
+
return self.cls.predictions.decoder
|
1322 |
+
|
1323 |
+
def set_output_embeddings(self, new_embeddings):
|
1324 |
+
self.cls.predictions.decoder = new_embeddings
|
1325 |
+
|
1326 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1327 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
|
1328 |
+
def forward(
|
1329 |
+
self,
|
1330 |
+
input_ids=None,
|
1331 |
+
attention_mask=None,
|
1332 |
+
token_type_ids=None,
|
1333 |
+
position_ids=None,
|
1334 |
+
head_mask=None,
|
1335 |
+
inputs_embeds=None,
|
1336 |
+
encoder_hidden_states=None,
|
1337 |
+
encoder_attention_mask=None,
|
1338 |
+
labels=None,
|
1339 |
+
past_key_values=None,
|
1340 |
+
use_cache=None,
|
1341 |
+
output_attentions=None,
|
1342 |
+
output_hidden_states=None,
|
1343 |
+
return_dict=None,
|
1344 |
+
is_decoder=True,
|
1345 |
+
reduction='mean',
|
1346 |
+
mode='multi_modal',
|
1347 |
+
normalize_attention=True,
|
1348 |
+
soft_labels=None,
|
1349 |
+
alpha=0,
|
1350 |
+
return_logits=False,
|
1351 |
+
):
|
1352 |
+
r"""
|
1353 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
1354 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
1355 |
+
the model is configured as a decoder.
|
1356 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1357 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1358 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
1359 |
+
- 1 for tokens that are **not masked**,
|
1360 |
+
- 0 for tokens that are **masked**.
|
1361 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1362 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
1363 |
+
``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
|
1364 |
+
ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
|
1365 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
1366 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1367 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
1368 |
+
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
1369 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
1370 |
+
use_cache (:obj:`bool`, `optional`):
|
1371 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
1372 |
+
decoding (see :obj:`past_key_values`).
|
1373 |
+
Returns:
|
1374 |
+
Example::
|
1375 |
+
>>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
|
1376 |
+
>>> import torch
|
1377 |
+
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
|
1378 |
+
>>> config = BertConfig.from_pretrained("bert-base-cased")
|
1379 |
+
>>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
|
1380 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
1381 |
+
>>> outputs = model(**inputs)
|
1382 |
+
>>> prediction_logits = outputs.logits
|
1383 |
+
"""
|
1384 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1385 |
+
if labels is not None:
|
1386 |
+
use_cache = False
|
1387 |
+
|
1388 |
+
outputs = self.bert(
|
1389 |
+
input_ids,
|
1390 |
+
attention_mask=attention_mask,
|
1391 |
+
token_type_ids=token_type_ids,
|
1392 |
+
position_ids=position_ids,
|
1393 |
+
head_mask=head_mask,
|
1394 |
+
inputs_embeds=inputs_embeds,
|
1395 |
+
encoder_hidden_states=encoder_hidden_states,
|
1396 |
+
encoder_attention_mask=encoder_attention_mask,
|
1397 |
+
past_key_values=past_key_values,
|
1398 |
+
use_cache=use_cache,
|
1399 |
+
output_attentions=output_attentions,
|
1400 |
+
output_hidden_states=output_hidden_states,
|
1401 |
+
return_dict=return_dict,
|
1402 |
+
is_decoder=is_decoder,
|
1403 |
+
mode=mode,
|
1404 |
+
normalize_attention=normalize_attention,
|
1405 |
+
)
|
1406 |
+
|
1407 |
+
sequence_output = outputs[0]
|
1408 |
+
prediction_scores = self.cls(sequence_output)
|
1409 |
+
|
1410 |
+
if return_logits:
|
1411 |
+
return prediction_scores[:, :-1, :].contiguous()
|
1412 |
+
|
1413 |
+
lm_loss = None
|
1414 |
+
if labels is not None:
|
1415 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
1416 |
+
shifted_prediction_scores = prediction_scores[:,
|
1417 |
+
:-1, :].contiguous()
|
1418 |
+
labels = labels[:, 1:].contiguous()
|
1419 |
+
loss_fct = CrossEntropyLoss(reduction=reduction)
|
1420 |
+
lm_loss = loss_fct(
|
1421 |
+
shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1422 |
+
lm_loss = lm_loss.view(prediction_scores.size(0), -1).sum(1)
|
1423 |
+
|
1424 |
+
if soft_labels is not None:
|
1425 |
+
loss_distill = - \
|
1426 |
+
torch.sum(F.log_softmax(shifted_prediction_scores,
|
1427 |
+
dim=1)*soft_labels, dim=-1)
|
1428 |
+
loss_distill = (loss_distill * (labels != -100)).sum(1)
|
1429 |
+
lm_loss = (1-alpha)*lm_loss + alpha*loss_distill
|
1430 |
+
|
1431 |
+
if not return_dict:
|
1432 |
+
output = (prediction_scores,) + outputs[2:]
|
1433 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
1434 |
+
|
1435 |
+
return CausalLMOutputWithCrossAttentions(
|
1436 |
+
loss=lm_loss,
|
1437 |
+
logits=prediction_scores,
|
1438 |
+
past_key_values=outputs.past_key_values,
|
1439 |
+
hidden_states=outputs.hidden_states,
|
1440 |
+
attentions=outputs.attentions,
|
1441 |
+
cross_attentions=outputs.cross_attentions,
|
1442 |
+
)
|
1443 |
+
|
1444 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs):
|
1445 |
+
input_shape = input_ids.shape
|
1446 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1447 |
+
if attention_mask is None:
|
1448 |
+
attention_mask = input_ids.new_ones(input_shape)
|
1449 |
+
|
1450 |
+
# cut decoder_input_ids if past is used
|
1451 |
+
if past is not None:
|
1452 |
+
input_ids = input_ids[:, -1:]
|
1453 |
+
|
1454 |
+
return {
|
1455 |
+
"input_ids": input_ids,
|
1456 |
+
"attention_mask": attention_mask,
|
1457 |
+
"past_key_values": past,
|
1458 |
+
"encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
|
1459 |
+
"encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
|
1460 |
+
"is_decoder": True,
|
1461 |
+
}
|
1462 |
+
|
1463 |
+
def _reorder_cache(self, past, beam_idx):
|
1464 |
+
reordered_past = ()
|
1465 |
+
for layer_past in past:
|
1466 |
+
reordered_past += (tuple(past_state.index_select(0, beam_idx)
|
1467 |
+
for past_state in layer_past),)
|
1468 |
+
return reordered_past
|
1469 |
+
|
1470 |
+
|
1471 |
+
@dataclass
|
1472 |
+
class MaskedLMOutputWithDistill(MaskedLMOutput):
|
1473 |
+
loss_aux: Optional[torch.FloatTensor] = None
|
1474 |
+
loss_distill: Optional[torch.FloatTensor] = None
|
1475 |
+
|
1476 |
+
|
1477 |
+
@add_start_docstrings("""Bert Model with a `language modeling` head on top. """, BERT_START_DOCSTRING)
|
1478 |
+
class BertForMaskedLM(BertPreTrainedModel):
|
1479 |
+
|
1480 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1481 |
+
_keys_to_ignore_on_load_missing = [
|
1482 |
+
r"position_ids", r"predictions.decoder.bias"]
|
1483 |
+
|
1484 |
+
def __init__(self, config):
|
1485 |
+
super().__init__(config)
|
1486 |
+
|
1487 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
1488 |
+
self.cls = BertOnlyMLMHead(config)
|
1489 |
+
|
1490 |
+
self.init_weights()
|
1491 |
+
|
1492 |
+
def tie_aux_decoder_weights(self, module, aux_modules):
|
1493 |
+
"""Tie decoder weights of all `aux_modules` to `module`, (not bias)"""
|
1494 |
+
for m in aux_modules:
|
1495 |
+
m.predictions.decoder.weight = module.predictions.decoder.weight
|
1496 |
+
|
1497 |
+
def get_output_embeddings(self):
|
1498 |
+
return self.cls.predictions.decoder
|
1499 |
+
|
1500 |
+
def set_output_embeddings(self, new_embeddings):
|
1501 |
+
self.cls.predictions.decoder = new_embeddings
|
1502 |
+
|
1503 |
+
def forward(
|
1504 |
+
self,
|
1505 |
+
input_ids=None,
|
1506 |
+
attention_mask=None,
|
1507 |
+
token_type_ids=None,
|
1508 |
+
position_ids=None,
|
1509 |
+
head_mask=None,
|
1510 |
+
inputs_embeds=None,
|
1511 |
+
encoder_embeds=None,
|
1512 |
+
encoder_hidden_states=None,
|
1513 |
+
encoder_attention_mask=None,
|
1514 |
+
labels=None,
|
1515 |
+
output_attentions=None,
|
1516 |
+
output_hidden_states=None,
|
1517 |
+
return_dict=None,
|
1518 |
+
is_decoder=False,
|
1519 |
+
mode='multi_modal',
|
1520 |
+
normalize_attention=True,
|
1521 |
+
soft_labels=None,
|
1522 |
+
alpha=0,
|
1523 |
+
return_logits=False,
|
1524 |
+
):
|
1525 |
+
r"""
|
1526 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1527 |
+
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
|
1528 |
+
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
|
1529 |
+
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
|
1530 |
+
"""
|
1531 |
+
|
1532 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1533 |
+
|
1534 |
+
outputs = self.bert(
|
1535 |
+
input_ids,
|
1536 |
+
attention_mask=attention_mask,
|
1537 |
+
token_type_ids=token_type_ids,
|
1538 |
+
position_ids=position_ids,
|
1539 |
+
head_mask=head_mask,
|
1540 |
+
inputs_embeds=inputs_embeds,
|
1541 |
+
encoder_embeds=encoder_embeds,
|
1542 |
+
encoder_hidden_states=encoder_hidden_states,
|
1543 |
+
encoder_attention_mask=encoder_attention_mask,
|
1544 |
+
output_attentions=output_attentions,
|
1545 |
+
output_hidden_states=output_hidden_states,
|
1546 |
+
return_dict=return_dict,
|
1547 |
+
is_decoder=is_decoder,
|
1548 |
+
mode=mode,
|
1549 |
+
normalize_attention=normalize_attention
|
1550 |
+
)
|
1551 |
+
|
1552 |
+
sequence_output = outputs[0]
|
1553 |
+
prediction_scores = self.cls(sequence_output)
|
1554 |
+
|
1555 |
+
if return_logits:
|
1556 |
+
return prediction_scores
|
1557 |
+
|
1558 |
+
masked_lm_loss = None
|
1559 |
+
masked_lm_loss_aux = 0.
|
1560 |
+
if labels is not None:
|
1561 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
1562 |
+
masked_lm_loss = loss_fct(
|
1563 |
+
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1564 |
+
|
1565 |
+
if soft_labels is not None:
|
1566 |
+
loss_distill = - \
|
1567 |
+
torch.sum(F.log_softmax(prediction_scores, dim=1)
|
1568 |
+
* soft_labels, dim=-1)
|
1569 |
+
loss_distill = loss_distill[labels != -100].mean()
|
1570 |
+
masked_lm_loss = (1-alpha)*masked_lm_loss + alpha*loss_distill
|
1571 |
+
|
1572 |
+
if not return_dict:
|
1573 |
+
output = (prediction_scores,) + outputs[2:]
|
1574 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1575 |
+
|
1576 |
+
# changed from MaskedLMOutput to MaskedLMOutputWithDistill
|
1577 |
+
return MaskedLMOutputWithDistill(
|
1578 |
+
loss=masked_lm_loss,
|
1579 |
+
loss_aux=masked_lm_loss_aux,
|
1580 |
+
logits=prediction_scores,
|
1581 |
+
hidden_states=outputs.hidden_states,
|
1582 |
+
attentions=outputs.attentions,
|
1583 |
+
)
|
1584 |
+
|
1585 |
+
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
|
1586 |
+
input_shape = input_ids.shape
|
1587 |
+
effective_batch_size = input_shape[0]
|
1588 |
+
|
1589 |
+
# add a dummy token
|
1590 |
+
assert self.config.pad_token_id is not None, "The PAD token should be defined for generation"
|
1591 |
+
attention_mask = torch.cat(
|
1592 |
+
[attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
|
1593 |
+
dummy_token = torch.full(
|
1594 |
+
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
|
1595 |
+
)
|
1596 |
+
input_ids = torch.cat([input_ids, dummy_token], dim=1)
|
1597 |
+
|
1598 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
1599 |
+
|
1600 |
+
|
1601 |
+
@add_start_docstrings(
|
1602 |
+
"""Bert Model with a `next sentence prediction (classification)` head on top. """,
|
1603 |
+
BERT_START_DOCSTRING,
|
1604 |
+
)
|
1605 |
+
class BertForNextSentencePrediction(BertPreTrainedModel):
|
1606 |
+
def __init__(self, config):
|
1607 |
+
super().__init__(config)
|
1608 |
+
|
1609 |
+
self.bert = BertModel(config)
|
1610 |
+
self.cls = BertOnlyNSPHead(config)
|
1611 |
+
|
1612 |
+
self.init_weights()
|
1613 |
+
|
1614 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1615 |
+
@replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
|
1616 |
+
def forward(
|
1617 |
+
self,
|
1618 |
+
input_ids=None,
|
1619 |
+
attention_mask=None,
|
1620 |
+
token_type_ids=None,
|
1621 |
+
position_ids=None,
|
1622 |
+
head_mask=None,
|
1623 |
+
inputs_embeds=None,
|
1624 |
+
labels=None,
|
1625 |
+
output_attentions=None,
|
1626 |
+
output_hidden_states=None,
|
1627 |
+
return_dict=None,
|
1628 |
+
**kwargs
|
1629 |
+
):
|
1630 |
+
r"""
|
1631 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
1632 |
+
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
|
1633 |
+
(see ``input_ids`` docstring). Indices should be in ``[0, 1]``:
|
1634 |
+
- 0 indicates sequence B is a continuation of sequence A,
|
1635 |
+
- 1 indicates sequence B is a random sequence.
|
1636 |
+
Returns:
|
1637 |
+
Example::
|
1638 |
+
>>> from transformers import BertTokenizer, BertForNextSentencePrediction
|
1639 |
+
>>> import torch
|
1640 |
+
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
1641 |
+
>>> model = BertForNextSentencePrediction.from_pretrained('bert-base-uncased')
|
1642 |
+
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
1643 |
+
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
|
1644 |
+
>>> encoding = tokenizer(prompt, next_sentence, return_tensors='pt')
|
1645 |
+
>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
|
1646 |
+
>>> logits = outputs.logits
|
1647 |
+
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
|
1648 |
+
"""
|
1649 |
+
|
1650 |
+
if "next_sentence_label" in kwargs:
|
1651 |
+
warnings.warn(
|
1652 |
+
"The `next_sentence_label` argument is deprecated and will be removed in a future version, use `labels` instead.",
|
1653 |
+
FutureWarning,
|
1654 |
+
)
|
1655 |
+
labels = kwargs.pop("next_sentence_label")
|
1656 |
+
|
1657 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1658 |
+
|
1659 |
+
outputs = self.bert(
|
1660 |
+
input_ids,
|
1661 |
+
attention_mask=attention_mask,
|
1662 |
+
token_type_ids=token_type_ids,
|
1663 |
+
position_ids=position_ids,
|
1664 |
+
head_mask=head_mask,
|
1665 |
+
inputs_embeds=inputs_embeds,
|
1666 |
+
output_attentions=output_attentions,
|
1667 |
+
output_hidden_states=output_hidden_states,
|
1668 |
+
return_dict=return_dict,
|
1669 |
+
)
|
1670 |
+
|
1671 |
+
pooled_output = outputs[1]
|
1672 |
+
|
1673 |
+
seq_relationship_scores = self.cls(pooled_output)
|
1674 |
+
|
1675 |
+
next_sentence_loss = None
|
1676 |
+
if labels is not None:
|
1677 |
+
loss_fct = CrossEntropyLoss()
|
1678 |
+
next_sentence_loss = loss_fct(
|
1679 |
+
seq_relationship_scores.view(-1, 2), labels.view(-1))
|
1680 |
+
|
1681 |
+
if not return_dict:
|
1682 |
+
output = (seq_relationship_scores,) + outputs[2:]
|
1683 |
+
return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output
|
1684 |
+
|
1685 |
+
return NextSentencePredictorOutput(
|
1686 |
+
loss=next_sentence_loss,
|
1687 |
+
logits=seq_relationship_scores,
|
1688 |
+
hidden_states=outputs.hidden_states,
|
1689 |
+
attentions=outputs.attentions,
|
1690 |
+
)
|
1691 |
+
|
1692 |
+
|
1693 |
+
@add_start_docstrings(
|
1694 |
+
"""
|
1695 |
+
Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
1696 |
+
output) e.g. for GLUE tasks.
|
1697 |
+
""",
|
1698 |
+
BERT_START_DOCSTRING,
|
1699 |
+
)
|
1700 |
+
class BertForSequenceClassification(BertPreTrainedModel):
|
1701 |
+
def __init__(self, config):
|
1702 |
+
super().__init__(config)
|
1703 |
+
self.num_labels = config.num_labels
|
1704 |
+
|
1705 |
+
self.bert = BertModel(config)
|
1706 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1707 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1708 |
+
|
1709 |
+
self.init_weights()
|
1710 |
+
|
1711 |
+
def forward(
|
1712 |
+
self,
|
1713 |
+
input_ids=None,
|
1714 |
+
attention_mask=None,
|
1715 |
+
token_type_ids=None,
|
1716 |
+
position_ids=None,
|
1717 |
+
head_mask=None,
|
1718 |
+
inputs_embeds=None,
|
1719 |
+
labels=None,
|
1720 |
+
output_attentions=None,
|
1721 |
+
output_hidden_states=None,
|
1722 |
+
return_dict=None,
|
1723 |
+
):
|
1724 |
+
r"""
|
1725 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
1726 |
+
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
|
1727 |
+
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
1728 |
+
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1729 |
+
"""
|
1730 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1731 |
+
|
1732 |
+
outputs = self.bert(
|
1733 |
+
input_ids,
|
1734 |
+
attention_mask=attention_mask,
|
1735 |
+
token_type_ids=token_type_ids,
|
1736 |
+
position_ids=position_ids,
|
1737 |
+
head_mask=head_mask,
|
1738 |
+
inputs_embeds=inputs_embeds,
|
1739 |
+
output_attentions=output_attentions,
|
1740 |
+
output_hidden_states=output_hidden_states,
|
1741 |
+
return_dict=return_dict,
|
1742 |
+
)
|
1743 |
+
|
1744 |
+
pooled_output = outputs[1]
|
1745 |
+
|
1746 |
+
pooled_output = self.dropout(pooled_output)
|
1747 |
+
logits = self.classifier(pooled_output)
|
1748 |
+
|
1749 |
+
loss = None
|
1750 |
+
if labels is not None:
|
1751 |
+
if self.num_labels == 1:
|
1752 |
+
# We are doing regression
|
1753 |
+
loss_fct = MSELoss()
|
1754 |
+
loss = loss_fct(logits.view(-1), labels.view(-1))
|
1755 |
+
else:
|
1756 |
+
loss_fct = CrossEntropyLoss()
|
1757 |
+
loss = loss_fct(
|
1758 |
+
logits.view(-1, self.num_labels), labels.view(-1))
|
1759 |
+
|
1760 |
+
if not return_dict:
|
1761 |
+
output = (logits,) + outputs[2:]
|
1762 |
+
return ((loss,) + output) if loss is not None else output
|
1763 |
+
|
1764 |
+
return SequenceClassifierOutput(
|
1765 |
+
loss=loss,
|
1766 |
+
logits=logits,
|
1767 |
+
hidden_states=outputs.hidden_states,
|
1768 |
+
attentions=outputs.attentions,
|
1769 |
+
)
|
1770 |
+
|
1771 |
+
|
1772 |
+
@add_start_docstrings(
|
1773 |
+
"""
|
1774 |
+
Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1775 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1776 |
+
""",
|
1777 |
+
BERT_START_DOCSTRING,
|
1778 |
+
)
|
1779 |
+
class BertForMultipleChoice(BertPreTrainedModel):
|
1780 |
+
def __init__(self, config):
|
1781 |
+
super().__init__(config)
|
1782 |
+
|
1783 |
+
self.bert = BertModel(config)
|
1784 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1785 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
1786 |
+
|
1787 |
+
self.init_weights()
|
1788 |
+
|
1789 |
+
def forward(
|
1790 |
+
self,
|
1791 |
+
input_ids=None,
|
1792 |
+
attention_mask=None,
|
1793 |
+
token_type_ids=None,
|
1794 |
+
position_ids=None,
|
1795 |
+
head_mask=None,
|
1796 |
+
inputs_embeds=None,
|
1797 |
+
labels=None,
|
1798 |
+
output_attentions=None,
|
1799 |
+
output_hidden_states=None,
|
1800 |
+
return_dict=None,
|
1801 |
+
):
|
1802 |
+
r"""
|
1803 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
1804 |
+
Labels for computing the multiple choice classification loss. Indices should be in ``[0, ...,
|
1805 |
+
num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See
|
1806 |
+
:obj:`input_ids` above)
|
1807 |
+
"""
|
1808 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1809 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
1810 |
+
|
1811 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)
|
1812 |
+
) if input_ids is not None else None
|
1813 |
+
attention_mask = attention_mask.view(
|
1814 |
+
-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1815 |
+
token_type_ids = token_type_ids.view(
|
1816 |
+
-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
1817 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)
|
1818 |
+
) if position_ids is not None else None
|
1819 |
+
inputs_embeds = (
|
1820 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2),
|
1821 |
+
inputs_embeds.size(-1))
|
1822 |
+
if inputs_embeds is not None
|
1823 |
+
else None
|
1824 |
+
)
|
1825 |
+
|
1826 |
+
outputs = self.bert(
|
1827 |
+
input_ids,
|
1828 |
+
attention_mask=attention_mask,
|
1829 |
+
token_type_ids=token_type_ids,
|
1830 |
+
position_ids=position_ids,
|
1831 |
+
head_mask=head_mask,
|
1832 |
+
inputs_embeds=inputs_embeds,
|
1833 |
+
output_attentions=output_attentions,
|
1834 |
+
output_hidden_states=output_hidden_states,
|
1835 |
+
return_dict=return_dict,
|
1836 |
+
)
|
1837 |
+
|
1838 |
+
pooled_output = outputs[1]
|
1839 |
+
|
1840 |
+
pooled_output = self.dropout(pooled_output)
|
1841 |
+
logits = self.classifier(pooled_output)
|
1842 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1843 |
+
|
1844 |
+
loss = None
|
1845 |
+
if labels is not None:
|
1846 |
+
loss_fct = CrossEntropyLoss()
|
1847 |
+
loss = loss_fct(reshaped_logits, labels)
|
1848 |
+
|
1849 |
+
if not return_dict:
|
1850 |
+
output = (reshaped_logits,) + outputs[2:]
|
1851 |
+
return ((loss,) + output) if loss is not None else output
|
1852 |
+
|
1853 |
+
return MultipleChoiceModelOutput(
|
1854 |
+
loss=loss,
|
1855 |
+
logits=reshaped_logits,
|
1856 |
+
hidden_states=outputs.hidden_states,
|
1857 |
+
attentions=outputs.attentions,
|
1858 |
+
)
|
1859 |
+
|
1860 |
+
|
1861 |
+
@add_start_docstrings(
|
1862 |
+
"""
|
1863 |
+
Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1864 |
+
Named-Entity-Recognition (NER) tasks.
|
1865 |
+
""",
|
1866 |
+
BERT_START_DOCSTRING,
|
1867 |
+
)
|
1868 |
+
class BertForTokenClassification(BertPreTrainedModel):
|
1869 |
+
|
1870 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1871 |
+
|
1872 |
+
def __init__(self, config):
|
1873 |
+
super().__init__(config)
|
1874 |
+
self.num_labels = config.num_labels
|
1875 |
+
|
1876 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
1877 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1878 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1879 |
+
|
1880 |
+
self.init_weights()
|
1881 |
+
|
1882 |
+
def forward(
|
1883 |
+
self,
|
1884 |
+
input_ids=None,
|
1885 |
+
attention_mask=None,
|
1886 |
+
token_type_ids=None,
|
1887 |
+
position_ids=None,
|
1888 |
+
head_mask=None,
|
1889 |
+
inputs_embeds=None,
|
1890 |
+
labels=None,
|
1891 |
+
output_attentions=None,
|
1892 |
+
output_hidden_states=None,
|
1893 |
+
return_dict=None,
|
1894 |
+
):
|
1895 |
+
r"""
|
1896 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1897 |
+
Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels -
|
1898 |
+
1]``.
|
1899 |
+
"""
|
1900 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1901 |
+
|
1902 |
+
outputs = self.bert(
|
1903 |
+
input_ids,
|
1904 |
+
attention_mask=attention_mask,
|
1905 |
+
token_type_ids=token_type_ids,
|
1906 |
+
position_ids=position_ids,
|
1907 |
+
head_mask=head_mask,
|
1908 |
+
inputs_embeds=inputs_embeds,
|
1909 |
+
output_attentions=output_attentions,
|
1910 |
+
output_hidden_states=output_hidden_states,
|
1911 |
+
return_dict=return_dict,
|
1912 |
+
)
|
1913 |
+
|
1914 |
+
sequence_output = outputs[0]
|
1915 |
+
|
1916 |
+
sequence_output = self.dropout(sequence_output)
|
1917 |
+
logits = self.classifier(sequence_output)
|
1918 |
+
|
1919 |
+
loss = None
|
1920 |
+
if labels is not None:
|
1921 |
+
loss_fct = CrossEntropyLoss()
|
1922 |
+
# Only keep active parts of the loss
|
1923 |
+
if attention_mask is not None:
|
1924 |
+
active_loss = attention_mask.view(-1) == 1
|
1925 |
+
active_logits = logits.view(-1, self.num_labels)
|
1926 |
+
active_labels = torch.where(
|
1927 |
+
active_loss, labels.view(-1), torch.tensor(
|
1928 |
+
loss_fct.ignore_index).type_as(labels)
|
1929 |
+
)
|
1930 |
+
loss = loss_fct(active_logits, active_labels)
|
1931 |
+
else:
|
1932 |
+
loss = loss_fct(
|
1933 |
+
logits.view(-1, self.num_labels), labels.view(-1))
|
1934 |
+
|
1935 |
+
if not return_dict:
|
1936 |
+
output = (logits,) + outputs[2:]
|
1937 |
+
return ((loss,) + output) if loss is not None else output
|
1938 |
+
|
1939 |
+
return TokenClassifierOutput(
|
1940 |
+
loss=loss,
|
1941 |
+
logits=logits,
|
1942 |
+
hidden_states=outputs.hidden_states,
|
1943 |
+
attentions=outputs.attentions,
|
1944 |
+
)
|
1945 |
+
|
1946 |
+
|
1947 |
+
@add_start_docstrings(
|
1948 |
+
"""
|
1949 |
+
Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1950 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1951 |
+
""",
|
1952 |
+
BERT_START_DOCSTRING,
|
1953 |
+
)
|
1954 |
+
class BertForQuestionAnswering(BertPreTrainedModel):
|
1955 |
+
|
1956 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1957 |
+
|
1958 |
+
def __init__(self, config):
|
1959 |
+
super().__init__(config)
|
1960 |
+
self.num_labels = config.num_labels
|
1961 |
+
|
1962 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
1963 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1964 |
+
|
1965 |
+
self.init_weights()
|
1966 |
+
|
1967 |
+
def forward(
|
1968 |
+
self,
|
1969 |
+
input_ids=None,
|
1970 |
+
attention_mask=None,
|
1971 |
+
token_type_ids=None,
|
1972 |
+
position_ids=None,
|
1973 |
+
head_mask=None,
|
1974 |
+
inputs_embeds=None,
|
1975 |
+
start_positions=None,
|
1976 |
+
end_positions=None,
|
1977 |
+
output_attentions=None,
|
1978 |
+
output_hidden_states=None,
|
1979 |
+
return_dict=None,
|
1980 |
+
):
|
1981 |
+
r"""
|
1982 |
+
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
1983 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1984 |
+
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
|
1985 |
+
sequence are not taken into account for computing the loss.
|
1986 |
+
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
1987 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1988 |
+
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
|
1989 |
+
sequence are not taken into account for computing the loss.
|
1990 |
+
"""
|
1991 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1992 |
+
|
1993 |
+
outputs = self.bert(
|
1994 |
+
input_ids,
|
1995 |
+
attention_mask=attention_mask,
|
1996 |
+
token_type_ids=token_type_ids,
|
1997 |
+
position_ids=position_ids,
|
1998 |
+
head_mask=head_mask,
|
1999 |
+
inputs_embeds=inputs_embeds,
|
2000 |
+
output_attentions=output_attentions,
|
2001 |
+
output_hidden_states=output_hidden_states,
|
2002 |
+
return_dict=return_dict,
|
2003 |
+
)
|
2004 |
+
|
2005 |
+
sequence_output = outputs[0]
|
2006 |
+
|
2007 |
+
logits = self.qa_outputs(sequence_output)
|
2008 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
2009 |
+
start_logits = start_logits.squeeze(-1)
|
2010 |
+
end_logits = end_logits.squeeze(-1)
|
2011 |
+
|
2012 |
+
total_loss = None
|
2013 |
+
if start_positions is not None and end_positions is not None:
|
2014 |
+
# If we are on multi-GPU, split add a dimension
|
2015 |
+
if len(start_positions.size()) > 1:
|
2016 |
+
start_positions = start_positions.squeeze(-1)
|
2017 |
+
if len(end_positions.size()) > 1:
|
2018 |
+
end_positions = end_positions.squeeze(-1)
|
2019 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
2020 |
+
ignored_index = start_logits.size(1)
|
2021 |
+
start_positions.clamp_(0, ignored_index)
|
2022 |
+
end_positions.clamp_(0, ignored_index)
|
2023 |
+
|
2024 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
2025 |
+
start_loss = loss_fct(start_logits, start_positions)
|
2026 |
+
end_loss = loss_fct(end_logits, end_positions)
|
2027 |
+
total_loss = (start_loss + end_loss) / 2
|
2028 |
+
|
2029 |
+
if not return_dict:
|
2030 |
+
output = (start_logits, end_logits) + outputs[2:]
|
2031 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
2032 |
+
|
2033 |
+
return QuestionAnsweringModelOutput(
|
2034 |
+
loss=total_loss,
|
2035 |
+
start_logits=start_logits,
|
2036 |
+
end_logits=end_logits,
|
2037 |
+
hidden_states=outputs.hidden_states,
|
2038 |
+
attentions=outputs.attentions,
|
2039 |
+
)
|
svitt/tokenization_bert.py
ADDED
@@ -0,0 +1,546 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for Bert."""
|
16 |
+
|
17 |
+
|
18 |
+
import collections
|
19 |
+
import os
|
20 |
+
import unicodedata
|
21 |
+
from typing import List, Optional, Tuple
|
22 |
+
|
23 |
+
from transformers.tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
|
24 |
+
from transformers.utils import logging
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
|
30 |
+
|
31 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
32 |
+
"vocab_file": {
|
33 |
+
"bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt",
|
34 |
+
"bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt",
|
35 |
+
"bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt",
|
36 |
+
"bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt",
|
37 |
+
"bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt",
|
38 |
+
"bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt",
|
39 |
+
"bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt",
|
40 |
+
"bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt",
|
41 |
+
"bert-large-uncased-whole-word-masking": "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt",
|
42 |
+
"bert-large-cased-whole-word-masking": "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt",
|
43 |
+
"bert-large-uncased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt",
|
44 |
+
"bert-large-cased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt",
|
45 |
+
"bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt",
|
46 |
+
"bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt",
|
47 |
+
"bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt",
|
48 |
+
"TurkuNLP/bert-base-finnish-cased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt",
|
49 |
+
"TurkuNLP/bert-base-finnish-uncased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt",
|
50 |
+
"wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt",
|
51 |
+
}
|
52 |
+
}
|
53 |
+
|
54 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
55 |
+
"bert-base-uncased": 512,
|
56 |
+
"bert-large-uncased": 512,
|
57 |
+
"bert-base-cased": 512,
|
58 |
+
"bert-large-cased": 512,
|
59 |
+
"bert-base-multilingual-uncased": 512,
|
60 |
+
"bert-base-multilingual-cased": 512,
|
61 |
+
"bert-base-chinese": 512,
|
62 |
+
"bert-base-german-cased": 512,
|
63 |
+
"bert-large-uncased-whole-word-masking": 512,
|
64 |
+
"bert-large-cased-whole-word-masking": 512,
|
65 |
+
"bert-large-uncased-whole-word-masking-finetuned-squad": 512,
|
66 |
+
"bert-large-cased-whole-word-masking-finetuned-squad": 512,
|
67 |
+
"bert-base-cased-finetuned-mrpc": 512,
|
68 |
+
"bert-base-german-dbmdz-cased": 512,
|
69 |
+
"bert-base-german-dbmdz-uncased": 512,
|
70 |
+
"TurkuNLP/bert-base-finnish-cased-v1": 512,
|
71 |
+
"TurkuNLP/bert-base-finnish-uncased-v1": 512,
|
72 |
+
"wietsedv/bert-base-dutch-cased": 512,
|
73 |
+
}
|
74 |
+
|
75 |
+
PRETRAINED_INIT_CONFIGURATION = {
|
76 |
+
"bert-base-uncased": {"do_lower_case": True},
|
77 |
+
"bert-large-uncased": {"do_lower_case": True},
|
78 |
+
"bert-base-cased": {"do_lower_case": False},
|
79 |
+
"bert-large-cased": {"do_lower_case": False},
|
80 |
+
"bert-base-multilingual-uncased": {"do_lower_case": True},
|
81 |
+
"bert-base-multilingual-cased": {"do_lower_case": False},
|
82 |
+
"bert-base-chinese": {"do_lower_case": False},
|
83 |
+
"bert-base-german-cased": {"do_lower_case": False},
|
84 |
+
"bert-large-uncased-whole-word-masking": {"do_lower_case": True},
|
85 |
+
"bert-large-cased-whole-word-masking": {"do_lower_case": False},
|
86 |
+
"bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True},
|
87 |
+
"bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False},
|
88 |
+
"bert-base-cased-finetuned-mrpc": {"do_lower_case": False},
|
89 |
+
"bert-base-german-dbmdz-cased": {"do_lower_case": False},
|
90 |
+
"bert-base-german-dbmdz-uncased": {"do_lower_case": True},
|
91 |
+
"TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False},
|
92 |
+
"TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True},
|
93 |
+
"wietsedv/bert-base-dutch-cased": {"do_lower_case": False},
|
94 |
+
}
|
95 |
+
|
96 |
+
|
97 |
+
def load_vocab(vocab_file):
|
98 |
+
"""Loads a vocabulary file into a dictionary."""
|
99 |
+
vocab = collections.OrderedDict()
|
100 |
+
with open(vocab_file, "r", encoding="utf-8") as reader:
|
101 |
+
tokens = reader.readlines()
|
102 |
+
for index, token in enumerate(tokens):
|
103 |
+
token = token.rstrip("\n")
|
104 |
+
vocab[token] = index
|
105 |
+
return vocab
|
106 |
+
|
107 |
+
|
108 |
+
def whitespace_tokenize(text):
|
109 |
+
"""Runs basic whitespace cleaning and splitting on a piece of text."""
|
110 |
+
text = text.strip()
|
111 |
+
if not text:
|
112 |
+
return []
|
113 |
+
tokens = text.split()
|
114 |
+
return tokens
|
115 |
+
|
116 |
+
|
117 |
+
class BertTokenizer(PreTrainedTokenizer):
|
118 |
+
r"""
|
119 |
+
Construct a BERT tokenizer. Based on WordPiece.
|
120 |
+
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods.
|
121 |
+
Users should refer to this superclass for more information regarding those methods.
|
122 |
+
Args:
|
123 |
+
vocab_file (:obj:`str`):
|
124 |
+
File containing the vocabulary.
|
125 |
+
do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
126 |
+
Whether or not to lowercase the input when tokenizing.
|
127 |
+
do_basic_tokenize (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
128 |
+
Whether or not to do basic tokenization before WordPiece.
|
129 |
+
never_split (:obj:`Iterable`, `optional`):
|
130 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
131 |
+
:obj:`do_basic_tokenize=True`
|
132 |
+
unk_token (:obj:`str`, `optional`, defaults to :obj:`"[UNK]"`):
|
133 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
134 |
+
token instead.
|
135 |
+
sep_token (:obj:`str`, `optional`, defaults to :obj:`"[SEP]"`):
|
136 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
137 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
138 |
+
token of a sequence built with special tokens.
|
139 |
+
pad_token (:obj:`str`, `optional`, defaults to :obj:`"[PAD]"`):
|
140 |
+
The token used for padding, for example when batching sequences of different lengths.
|
141 |
+
cls_token (:obj:`str`, `optional`, defaults to :obj:`"[CLS]"`):
|
142 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
143 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
144 |
+
mask_token (:obj:`str`, `optional`, defaults to :obj:`"[MASK]"`):
|
145 |
+
The token used for masking values. This is the token used when training this model with masked language
|
146 |
+
modeling. This is the token which the model will try to predict.
|
147 |
+
tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
148 |
+
Whether or not to tokenize Chinese characters.
|
149 |
+
This should likely be deactivated for Japanese (see this `issue
|
150 |
+
<https://github.com/huggingface/transformers/issues/328>`__).
|
151 |
+
strip_accents: (:obj:`bool`, `optional`):
|
152 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
153 |
+
value for :obj:`lowercase` (as in the original BERT).
|
154 |
+
"""
|
155 |
+
|
156 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
157 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
158 |
+
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
|
159 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
160 |
+
|
161 |
+
def __init__(
|
162 |
+
self,
|
163 |
+
vocab_file,
|
164 |
+
do_lower_case=True,
|
165 |
+
do_basic_tokenize=True,
|
166 |
+
never_split=None,
|
167 |
+
unk_token="[UNK]",
|
168 |
+
sep_token="[SEP]",
|
169 |
+
pad_token="[PAD]",
|
170 |
+
cls_token="[CLS]",
|
171 |
+
mask_token="[MASK]",
|
172 |
+
tokenize_chinese_chars=True,
|
173 |
+
strip_accents=None,
|
174 |
+
**kwargs
|
175 |
+
):
|
176 |
+
super().__init__(
|
177 |
+
do_lower_case=do_lower_case,
|
178 |
+
do_basic_tokenize=do_basic_tokenize,
|
179 |
+
never_split=never_split,
|
180 |
+
unk_token=unk_token,
|
181 |
+
sep_token=sep_token,
|
182 |
+
pad_token=pad_token,
|
183 |
+
cls_token=cls_token,
|
184 |
+
mask_token=mask_token,
|
185 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
186 |
+
strip_accents=strip_accents,
|
187 |
+
**kwargs,
|
188 |
+
)
|
189 |
+
|
190 |
+
if not os.path.isfile(vocab_file):
|
191 |
+
raise ValueError(
|
192 |
+
"Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained "
|
193 |
+
"model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
|
194 |
+
vocab_file)
|
195 |
+
)
|
196 |
+
self.vocab = load_vocab(vocab_file)
|
197 |
+
self.ids_to_tokens = collections.OrderedDict(
|
198 |
+
[(ids, tok) for tok, ids in self.vocab.items()])
|
199 |
+
self.do_basic_tokenize = do_basic_tokenize
|
200 |
+
if do_basic_tokenize:
|
201 |
+
self.basic_tokenizer = BasicTokenizer(
|
202 |
+
do_lower_case=do_lower_case,
|
203 |
+
never_split=never_split,
|
204 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
205 |
+
strip_accents=strip_accents,
|
206 |
+
)
|
207 |
+
self.wordpiece_tokenizer = WordpieceTokenizer(
|
208 |
+
vocab=self.vocab, unk_token=self.unk_token)
|
209 |
+
|
210 |
+
@property
|
211 |
+
def do_lower_case(self):
|
212 |
+
return self.basic_tokenizer.do_lower_case
|
213 |
+
|
214 |
+
@property
|
215 |
+
def vocab_size(self):
|
216 |
+
return len(self.vocab)
|
217 |
+
|
218 |
+
def get_vocab(self):
|
219 |
+
return dict(self.vocab, **self.added_tokens_encoder)
|
220 |
+
|
221 |
+
def _tokenize(self, text):
|
222 |
+
split_tokens = []
|
223 |
+
if self.do_basic_tokenize:
|
224 |
+
for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
|
225 |
+
|
226 |
+
# If the token is part of the never_split set
|
227 |
+
if token in self.basic_tokenizer.never_split:
|
228 |
+
split_tokens.append(token)
|
229 |
+
else:
|
230 |
+
split_tokens += self.wordpiece_tokenizer.tokenize(token)
|
231 |
+
else:
|
232 |
+
split_tokens = self.wordpiece_tokenizer.tokenize(text)
|
233 |
+
return split_tokens
|
234 |
+
|
235 |
+
def _convert_token_to_id(self, token):
|
236 |
+
""" Converts a token (str) in an id using the vocab. """
|
237 |
+
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
238 |
+
|
239 |
+
def _convert_id_to_token(self, index):
|
240 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
241 |
+
return self.ids_to_tokens.get(index, self.unk_token)
|
242 |
+
|
243 |
+
def convert_tokens_to_string(self, tokens):
|
244 |
+
""" Converts a sequence of tokens (string) in a single string. """
|
245 |
+
out_string = " ".join(tokens).replace(" ##", "").strip()
|
246 |
+
return out_string
|
247 |
+
|
248 |
+
def build_inputs_with_special_tokens(
|
249 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
250 |
+
) -> List[int]:
|
251 |
+
"""
|
252 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
253 |
+
adding special tokens. A BERT sequence has the following format:
|
254 |
+
- single sequence: ``[CLS] X ``
|
255 |
+
- pair of sequences: ``[CLS] A [SEP] B [SEP]``
|
256 |
+
Args:
|
257 |
+
token_ids_0 (:obj:`List[int]`):
|
258 |
+
List of IDs to which the special tokens will be added.
|
259 |
+
token_ids_1 (:obj:`List[int]`, `optional`):
|
260 |
+
Optional second list of IDs for sequence pairs.
|
261 |
+
Returns:
|
262 |
+
:obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens.
|
263 |
+
"""
|
264 |
+
if token_ids_1 is None:
|
265 |
+
return [self.cls_token_id] + token_ids_0
|
266 |
+
cls = [self.cls_token_id]
|
267 |
+
sep = [self.sep_token_id]
|
268 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep
|
269 |
+
|
270 |
+
def get_special_tokens_mask(
|
271 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
272 |
+
) -> List[int]:
|
273 |
+
"""
|
274 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
275 |
+
special tokens using the tokenizer ``prepare_for_model`` method.
|
276 |
+
Args:
|
277 |
+
token_ids_0 (:obj:`List[int]`):
|
278 |
+
List of IDs.
|
279 |
+
token_ids_1 (:obj:`List[int]`, `optional`):
|
280 |
+
Optional second list of IDs for sequence pairs.
|
281 |
+
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
282 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
283 |
+
Returns:
|
284 |
+
:obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
285 |
+
"""
|
286 |
+
|
287 |
+
if already_has_special_tokens:
|
288 |
+
if token_ids_1 is not None:
|
289 |
+
raise ValueError(
|
290 |
+
"You should not supply a second sequence if the provided sequence of "
|
291 |
+
"ids is already formatted with special tokens for the model."
|
292 |
+
)
|
293 |
+
return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0))
|
294 |
+
|
295 |
+
if token_ids_1 is not None:
|
296 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
297 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
298 |
+
|
299 |
+
def create_token_type_ids_from_sequences(
|
300 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
301 |
+
) -> List[int]:
|
302 |
+
"""
|
303 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
|
304 |
+
pair mask has the following format:
|
305 |
+
::
|
306 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
307 |
+
| first sequence | second sequence |
|
308 |
+
If :obj:`token_ids_1` is :obj:`None`, this method only returns the first portion of the mask (0s).
|
309 |
+
Args:
|
310 |
+
token_ids_0 (:obj:`List[int]`):
|
311 |
+
List of IDs.
|
312 |
+
token_ids_1 (:obj:`List[int]`, `optional`):
|
313 |
+
Optional second list of IDs for sequence pairs.
|
314 |
+
Returns:
|
315 |
+
:obj:`List[int]`: List of `token type IDs <../glossary.html#token-type-ids>`_ according to the given
|
316 |
+
sequence(s).
|
317 |
+
"""
|
318 |
+
sep = [self.sep_token_id]
|
319 |
+
cls = [self.cls_token_id]
|
320 |
+
if token_ids_1 is None:
|
321 |
+
return len(cls + token_ids_0 + sep) * [0]
|
322 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
323 |
+
|
324 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
325 |
+
index = 0
|
326 |
+
if os.path.isdir(save_directory):
|
327 |
+
vocab_file = os.path.join(
|
328 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") +
|
329 |
+
VOCAB_FILES_NAMES["vocab_file"]
|
330 |
+
)
|
331 |
+
else:
|
332 |
+
vocab_file = (filename_prefix +
|
333 |
+
"-" if filename_prefix else "") + save_directory
|
334 |
+
with open(vocab_file, "w", encoding="utf-8") as writer:
|
335 |
+
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
|
336 |
+
if index != token_index:
|
337 |
+
logger.warning(
|
338 |
+
"Saving vocabulary to {}: vocabulary indices are not consecutive."
|
339 |
+
" Please check that the vocabulary is not corrupted!".format(
|
340 |
+
vocab_file)
|
341 |
+
)
|
342 |
+
index = token_index
|
343 |
+
writer.write(token + "\n")
|
344 |
+
index += 1
|
345 |
+
return (vocab_file,)
|
346 |
+
|
347 |
+
|
348 |
+
class BasicTokenizer(object):
|
349 |
+
"""
|
350 |
+
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
|
351 |
+
Args:
|
352 |
+
do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
353 |
+
Whether or not to lowercase the input when tokenizing.
|
354 |
+
never_split (:obj:`Iterable`, `optional`):
|
355 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
356 |
+
:obj:`do_basic_tokenize=True`
|
357 |
+
tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
358 |
+
Whether or not to tokenize Chinese characters.
|
359 |
+
This should likely be deactivated for Japanese (see this `issue
|
360 |
+
<https://github.com/huggingface/transformers/issues/328>`__).
|
361 |
+
strip_accents: (:obj:`bool`, `optional`):
|
362 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
363 |
+
value for :obj:`lowercase` (as in the original BERT).
|
364 |
+
"""
|
365 |
+
|
366 |
+
def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None):
|
367 |
+
if never_split is None:
|
368 |
+
never_split = []
|
369 |
+
self.do_lower_case = do_lower_case
|
370 |
+
self.never_split = set(never_split)
|
371 |
+
self.tokenize_chinese_chars = tokenize_chinese_chars
|
372 |
+
self.strip_accents = strip_accents
|
373 |
+
|
374 |
+
def tokenize(self, text, never_split=None):
|
375 |
+
"""
|
376 |
+
Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see
|
377 |
+
WordPieceTokenizer.
|
378 |
+
Args:
|
379 |
+
**never_split**: (`optional`) list of str
|
380 |
+
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
|
381 |
+
:func:`PreTrainedTokenizer.tokenize`) List of token not to split.
|
382 |
+
"""
|
383 |
+
# union() returns a new set by concatenating the two sets.
|
384 |
+
never_split = self.never_split.union(
|
385 |
+
set(never_split)) if never_split else self.never_split
|
386 |
+
text = self._clean_text(text)
|
387 |
+
|
388 |
+
# This was added on November 1st, 2018 for the multilingual and Chinese
|
389 |
+
# models. This is also applied to the English models now, but it doesn't
|
390 |
+
# matter since the English models were not trained on any Chinese data
|
391 |
+
# and generally don't have any Chinese data in them (there are Chinese
|
392 |
+
# characters in the vocabulary because Wikipedia does have some Chinese
|
393 |
+
# words in the English Wikipedia.).
|
394 |
+
if self.tokenize_chinese_chars:
|
395 |
+
text = self._tokenize_chinese_chars(text)
|
396 |
+
orig_tokens = whitespace_tokenize(text)
|
397 |
+
split_tokens = []
|
398 |
+
for token in orig_tokens:
|
399 |
+
if token not in never_split:
|
400 |
+
if self.do_lower_case:
|
401 |
+
token = token.lower()
|
402 |
+
if self.strip_accents is not False:
|
403 |
+
token = self._run_strip_accents(token)
|
404 |
+
elif self.strip_accents:
|
405 |
+
token = self._run_strip_accents(token)
|
406 |
+
split_tokens.extend(self._run_split_on_punc(token, never_split))
|
407 |
+
|
408 |
+
output_tokens = whitespace_tokenize(" ".join(split_tokens))
|
409 |
+
return output_tokens
|
410 |
+
|
411 |
+
def _run_strip_accents(self, text):
|
412 |
+
"""Strips accents from a piece of text."""
|
413 |
+
text = unicodedata.normalize("NFD", text)
|
414 |
+
output = []
|
415 |
+
for char in text:
|
416 |
+
cat = unicodedata.category(char)
|
417 |
+
if cat == "Mn":
|
418 |
+
continue
|
419 |
+
output.append(char)
|
420 |
+
return "".join(output)
|
421 |
+
|
422 |
+
def _run_split_on_punc(self, text, never_split=None):
|
423 |
+
"""Splits punctuation on a piece of text."""
|
424 |
+
if never_split is not None and text in never_split:
|
425 |
+
return [text]
|
426 |
+
chars = list(text)
|
427 |
+
i = 0
|
428 |
+
start_new_word = True
|
429 |
+
output = []
|
430 |
+
while i < len(chars):
|
431 |
+
char = chars[i]
|
432 |
+
if _is_punctuation(char):
|
433 |
+
output.append([char])
|
434 |
+
start_new_word = True
|
435 |
+
else:
|
436 |
+
if start_new_word:
|
437 |
+
output.append([])
|
438 |
+
start_new_word = False
|
439 |
+
output[-1].append(char)
|
440 |
+
i += 1
|
441 |
+
|
442 |
+
return ["".join(x) for x in output]
|
443 |
+
|
444 |
+
def _tokenize_chinese_chars(self, text):
|
445 |
+
"""Adds whitespace around any CJK character."""
|
446 |
+
output = []
|
447 |
+
for char in text:
|
448 |
+
cp = ord(char)
|
449 |
+
if self._is_chinese_char(cp):
|
450 |
+
output.append(" ")
|
451 |
+
output.append(char)
|
452 |
+
output.append(" ")
|
453 |
+
else:
|
454 |
+
output.append(char)
|
455 |
+
return "".join(output)
|
456 |
+
|
457 |
+
def _is_chinese_char(self, cp):
|
458 |
+
"""Checks whether CP is the codepoint of a CJK character."""
|
459 |
+
# This defines a "chinese character" as anything in the CJK Unicode block:
|
460 |
+
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
461 |
+
#
|
462 |
+
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
463 |
+
# despite its name. The modern Korean Hangul alphabet is a different block,
|
464 |
+
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
465 |
+
# space-separated words, so they are not treated specially and handled
|
466 |
+
# like the all of the other languages.
|
467 |
+
if (
|
468 |
+
(cp >= 0x4E00 and cp <= 0x9FFF)
|
469 |
+
or (cp >= 0x3400 and cp <= 0x4DBF) #
|
470 |
+
or (cp >= 0x20000 and cp <= 0x2A6DF) #
|
471 |
+
or (cp >= 0x2A700 and cp <= 0x2B73F) #
|
472 |
+
or (cp >= 0x2B740 and cp <= 0x2B81F) #
|
473 |
+
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
|
474 |
+
or (cp >= 0xF900 and cp <= 0xFAFF)
|
475 |
+
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
|
476 |
+
): #
|
477 |
+
return True
|
478 |
+
|
479 |
+
return False
|
480 |
+
|
481 |
+
def _clean_text(self, text):
|
482 |
+
"""Performs invalid character removal and whitespace cleanup on text."""
|
483 |
+
output = []
|
484 |
+
for char in text:
|
485 |
+
cp = ord(char)
|
486 |
+
if cp == 0 or cp == 0xFFFD or _is_control(char):
|
487 |
+
continue
|
488 |
+
if _is_whitespace(char):
|
489 |
+
output.append(" ")
|
490 |
+
else:
|
491 |
+
output.append(char)
|
492 |
+
return "".join(output)
|
493 |
+
|
494 |
+
|
495 |
+
class WordpieceTokenizer(object):
|
496 |
+
"""Runs WordPiece tokenization."""
|
497 |
+
|
498 |
+
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
|
499 |
+
self.vocab = vocab
|
500 |
+
self.unk_token = unk_token
|
501 |
+
self.max_input_chars_per_word = max_input_chars_per_word
|
502 |
+
|
503 |
+
def tokenize(self, text):
|
504 |
+
"""
|
505 |
+
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
|
506 |
+
tokenization using the given vocabulary.
|
507 |
+
For example, :obj:`input = "unaffable"` wil return as output :obj:`["un", "##aff", "##able"]`.
|
508 |
+
Args:
|
509 |
+
text: A single token or whitespace separated tokens. This should have
|
510 |
+
already been passed through `BasicTokenizer`.
|
511 |
+
Returns:
|
512 |
+
A list of wordpiece tokens.
|
513 |
+
"""
|
514 |
+
|
515 |
+
output_tokens = []
|
516 |
+
for token in whitespace_tokenize(text):
|
517 |
+
chars = list(token)
|
518 |
+
if len(chars) > self.max_input_chars_per_word:
|
519 |
+
output_tokens.append(self.unk_token)
|
520 |
+
continue
|
521 |
+
|
522 |
+
is_bad = False
|
523 |
+
start = 0
|
524 |
+
sub_tokens = []
|
525 |
+
while start < len(chars):
|
526 |
+
end = len(chars)
|
527 |
+
cur_substr = None
|
528 |
+
while start < end:
|
529 |
+
substr = "".join(chars[start:end])
|
530 |
+
if start > 0:
|
531 |
+
substr = "##" + substr
|
532 |
+
if substr in self.vocab:
|
533 |
+
cur_substr = substr
|
534 |
+
break
|
535 |
+
end -= 1
|
536 |
+
if cur_substr is None:
|
537 |
+
is_bad = True
|
538 |
+
break
|
539 |
+
sub_tokens.append(cur_substr)
|
540 |
+
start = end
|
541 |
+
|
542 |
+
if is_bad:
|
543 |
+
output_tokens.append(self.unk_token)
|
544 |
+
else:
|
545 |
+
output_tokens.extend(sub_tokens)
|
546 |
+
return output_tokens
|
svitt/utils.py
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import torch.nn as nn
|
4 |
+
from scipy import interpolate
|
5 |
+
import numpy as np
|
6 |
+
from einops import rearrange, repeat
|
7 |
+
|
8 |
+
|
9 |
+
def _init_transformer_weights(module, initializer_range=0.02):
|
10 |
+
"""Initialize the weights. Copied from transformers ViT/Bert model init"""
|
11 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
12 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
13 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
14 |
+
module.weight.data.normal_(mean=0.0, std=initializer_range)
|
15 |
+
if module.bias is not None:
|
16 |
+
module.bias.data.zero_()
|
17 |
+
elif isinstance(module, nn.Embedding):
|
18 |
+
module.weight.data.normal_(mean=0.0, std=initializer_range)
|
19 |
+
if module.padding_idx is not None:
|
20 |
+
module.weight.data[module.padding_idx].zero_()
|
21 |
+
elif isinstance(module, nn.LayerNorm):
|
22 |
+
module.bias.data.zero_()
|
23 |
+
module.weight.data.fill_(1.0)
|
24 |
+
|
25 |
+
|
26 |
+
def interpolate_pos_embed(pos_embed_old, pos_embed_new, num_patches_new):
|
27 |
+
"""
|
28 |
+
Args:
|
29 |
+
pos_embed_old: (1, L_old, d), pre-trained
|
30 |
+
pos_embed_new: (1, L_new, d), newly initialized, to be replaced by interpolated weights
|
31 |
+
num_patches_new:
|
32 |
+
"""
|
33 |
+
# interpolate position embedding
|
34 |
+
embedding_size = pos_embed_old.shape[-1]
|
35 |
+
num_extra_tokens = pos_embed_new.shape[-2] - num_patches_new
|
36 |
+
# height (== width) for the checkpoint position embedding
|
37 |
+
orig_size = int((pos_embed_old.shape[-2] - num_extra_tokens) ** 0.5)
|
38 |
+
# height (== width) for the new position embedding
|
39 |
+
new_size = int(num_patches_new ** 0.5)
|
40 |
+
|
41 |
+
if orig_size != new_size:
|
42 |
+
# class_token and dist_token are kept unchanged
|
43 |
+
# the extra tokens seems always at the beginning of the position embedding
|
44 |
+
extra_tokens = pos_embed_old[:, :num_extra_tokens]
|
45 |
+
# only the position tokens are interpolated
|
46 |
+
pos_tokens = pos_embed_old[:, num_extra_tokens:]
|
47 |
+
pos_tokens = pos_tokens.reshape(
|
48 |
+
-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
49 |
+
pos_tokens = torch.nn.functional.interpolate(
|
50 |
+
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
51 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
52 |
+
interpolated_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
53 |
+
return interpolated_pos_embed
|
54 |
+
else:
|
55 |
+
return pos_embed_old
|
56 |
+
|
57 |
+
|
58 |
+
def interpolate_pos_relative_bias_beit(state_dict_old, state_dict_new, patch_shape_new):
|
59 |
+
"""
|
60 |
+
Args:
|
61 |
+
state_dict_old: loaded state dict
|
62 |
+
state_dict_new: state dict for model with new image size
|
63 |
+
patch_shape_new: new model patch_shape
|
64 |
+
ref: https://github.com/microsoft/unilm/blob/master/beit/run_class_finetuning.py
|
65 |
+
"""
|
66 |
+
all_keys = list(state_dict_old.keys())
|
67 |
+
for key in all_keys:
|
68 |
+
if "relative_position_index" in key:
|
69 |
+
state_dict_old.pop(key)
|
70 |
+
|
71 |
+
if "relative_position_bias_table" in key:
|
72 |
+
rel_pos_bias = state_dict_old[key]
|
73 |
+
src_num_pos, num_attn_heads = rel_pos_bias.size()
|
74 |
+
dst_num_pos, _ = state_dict_new[key].size()
|
75 |
+
dst_patch_shape = patch_shape_new
|
76 |
+
if dst_patch_shape[0] != dst_patch_shape[1]:
|
77 |
+
raise NotImplementedError()
|
78 |
+
num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (dst_patch_shape[1] * 2 - 1)
|
79 |
+
src_size = int((src_num_pos - num_extra_tokens) ** 0.5)
|
80 |
+
dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5)
|
81 |
+
if src_size != dst_size:
|
82 |
+
extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
|
83 |
+
rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]
|
84 |
+
|
85 |
+
def geometric_progression(a, r, n):
|
86 |
+
return a * (1.0 - r ** n) / (1.0 - r)
|
87 |
+
|
88 |
+
left, right = 1.01, 1.5
|
89 |
+
while right - left > 1e-6:
|
90 |
+
q = (left + right) / 2.0
|
91 |
+
gp = geometric_progression(1, q, src_size // 2)
|
92 |
+
if gp > dst_size // 2:
|
93 |
+
right = q
|
94 |
+
else:
|
95 |
+
left = q
|
96 |
+
|
97 |
+
# if q > 1.090307:
|
98 |
+
# q = 1.090307
|
99 |
+
|
100 |
+
dis = []
|
101 |
+
cur = 1
|
102 |
+
for i in range(src_size // 2):
|
103 |
+
dis.append(cur)
|
104 |
+
cur += q ** (i + 1)
|
105 |
+
|
106 |
+
r_ids = [-_ for _ in reversed(dis)]
|
107 |
+
|
108 |
+
x = r_ids + [0] + dis
|
109 |
+
y = r_ids + [0] + dis
|
110 |
+
|
111 |
+
t = dst_size // 2.0
|
112 |
+
dx = np.arange(-t, t + 0.1, 1.0)
|
113 |
+
dy = np.arange(-t, t + 0.1, 1.0)
|
114 |
+
|
115 |
+
all_rel_pos_bias = []
|
116 |
+
|
117 |
+
for i in range(num_attn_heads):
|
118 |
+
z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy()
|
119 |
+
f = interpolate.interp2d(x, y, z, kind='cubic')
|
120 |
+
all_rel_pos_bias.append(
|
121 |
+
torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device))
|
122 |
+
|
123 |
+
rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1)
|
124 |
+
|
125 |
+
new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0)
|
126 |
+
state_dict_old[key] = new_rel_pos_bias
|
127 |
+
return state_dict_old
|
128 |
+
|
129 |
+
|
130 |
+
def interpolate_pos_relative_bias_beit_3d(state_dict_old, state_dict_new, patch_shape_new, src_t_size=1):
|
131 |
+
"""
|
132 |
+
Args:
|
133 |
+
state_dict_old: loaded state dict
|
134 |
+
state_dict_new: state dict for model with new image size
|
135 |
+
patch_shape_new: new model patch_shape
|
136 |
+
ref: https://github.com/microsoft/unilm/blob/master/beit/run_class_finetuning.py
|
137 |
+
"""
|
138 |
+
all_keys = list(state_dict_old.keys())
|
139 |
+
for key in all_keys:
|
140 |
+
if "relative_position_index" in key:
|
141 |
+
state_dict_old.pop(key)
|
142 |
+
|
143 |
+
if "relative_position_bias_table" in key:
|
144 |
+
src_num_pos, num_attn_heads = state_dict_old[key].size()
|
145 |
+
dst_num_pos, _ = state_dict_new[key].size()
|
146 |
+
if src_num_pos == dst_num_pos:
|
147 |
+
continue
|
148 |
+
|
149 |
+
num_extra_tokens = dst_num_pos - np.prod([w * 2 - 1 for w in patch_shape_new])
|
150 |
+
|
151 |
+
src_s_size = int((src_num_pos - num_extra_tokens) / src_t_size)
|
152 |
+
src_size = int(src_s_size ** 0.5)
|
153 |
+
dst_size = patch_shape_new[-1] * 2 - 1
|
154 |
+
|
155 |
+
if src_size != dst_size:
|
156 |
+
# Spatial interpolation
|
157 |
+
rel_pos_bias = state_dict_old[key]
|
158 |
+
extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
|
159 |
+
rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]
|
160 |
+
|
161 |
+
def geometric_progression(a, r, n):
|
162 |
+
return a * (1.0 - r ** n) / (1.0 - r)
|
163 |
+
|
164 |
+
left, right = 1.01, 1.5
|
165 |
+
while right - left > 1e-6:
|
166 |
+
q = (left + right) / 2.0
|
167 |
+
gp = geometric_progression(1, q, src_size // 2)
|
168 |
+
if gp > dst_size // 2:
|
169 |
+
right = q
|
170 |
+
else:
|
171 |
+
left = q
|
172 |
+
|
173 |
+
# if q > 1.090307:
|
174 |
+
# q = 1.090307
|
175 |
+
|
176 |
+
dis = []
|
177 |
+
cur = 1
|
178 |
+
for i in range(src_size // 2):
|
179 |
+
dis.append(cur)
|
180 |
+
cur += q ** (i + 1)
|
181 |
+
|
182 |
+
r_ids = [-_ for _ in reversed(dis)]
|
183 |
+
|
184 |
+
x = r_ids + [0] + dis
|
185 |
+
y = r_ids + [0] + dis
|
186 |
+
|
187 |
+
t = dst_size // 2.0
|
188 |
+
dx = np.arange(-t, t + 0.1, 1.0)
|
189 |
+
dy = np.arange(-t, t + 0.1, 1.0)
|
190 |
+
|
191 |
+
all_rel_pos_bias = []
|
192 |
+
|
193 |
+
for i in range(num_attn_heads):
|
194 |
+
z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy()
|
195 |
+
f = interpolate.interp2d(x, y, z, kind='cubic')
|
196 |
+
all_rel_pos_bias.append(
|
197 |
+
torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device))
|
198 |
+
|
199 |
+
rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1)
|
200 |
+
|
201 |
+
new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0)
|
202 |
+
state_dict_old[key] = new_rel_pos_bias
|
203 |
+
|
204 |
+
dst_t_size = patch_shape_new[0] * 2 - 1
|
205 |
+
if src_t_size != dst_t_size:
|
206 |
+
# Temporal interpolation
|
207 |
+
rel_pos_bias = state_dict_old[key]
|
208 |
+
extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
|
209 |
+
rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]
|
210 |
+
|
211 |
+
if src_t_size == 1:
|
212 |
+
rel_pos_bias = repeat(rel_pos_bias, 's d -> (t s) d', t=dst_t_size)
|
213 |
+
else:
|
214 |
+
rel_pos_bias = rearrange(rel_pos_bias, '(t s) d -> s d t', t=src_t_size)
|
215 |
+
rel_pos_bias = F.interpolate(rel_pos_bias, dst_t_size, mode='nearest')
|
216 |
+
rel_pos_bias = rearrange(rel_pos_bias, 's d t -> (t s) d')
|
217 |
+
new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0)
|
218 |
+
state_dict_old[key] = new_rel_pos_bias
|
219 |
+
|
220 |
+
return state_dict_old
|
221 |
+
|
222 |
+
|
223 |
+
def tile(x, dim, n_tile):
|
224 |
+
init_dim = x.size(dim)
|
225 |
+
repeat_idx = [1] * x.dim()
|
226 |
+
repeat_idx[dim] = n_tile
|
227 |
+
x = x.repeat(*repeat_idx)
|
228 |
+
order_index = torch.LongTensor(np.concatenate(
|
229 |
+
[init_dim * np.arange(n_tile) + i for i in range(init_dim)]))
|
230 |
+
return torch.index_select(x, dim, order_index.to(x.device))
|
231 |
+
|
232 |
+
|
233 |
+
def mask_logits(target, mask):
|
234 |
+
return target * mask + (1 - mask) * (-1e10)
|
235 |
+
|