Spaces:
Running
Running
pipeline_tag: sentence-similarity | |
language: multilingual | |
license: apache-2.0 | |
tags: | |
- sentence-transformers | |
- feature-extraction | |
- sentence-similarity | |
- transformers | |
# sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 | |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. | |
## Usage (Sentence-Transformers) | |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: | |
``` | |
pip install -U sentence-transformers | |
``` | |
Then you can use the model like this: | |
```python | |
from sentence_transformers import SentenceTransformer | |
sentences = ["This is an example sentence", "Each sentence is converted"] | |
model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2') | |
embeddings = model.encode(sentences) | |
print(embeddings) | |
``` | |
## Usage (HuggingFace Transformers) | |
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. | |
```python | |
from transformers import AutoTokenizer, AutoModel | |
import torch | |
#Mean Pooling - Take attention mask into account for correct averaging | |
def mean_pooling(model_output, attention_mask): | |
token_embeddings = model_output[0] #First element of model_output contains all token embeddings | |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() | |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) | |
# Sentences we want sentence embeddings for | |
sentences = ['This is an example sentence', 'Each sentence is converted'] | |
# Load model from HuggingFace Hub | |
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2') | |
model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2') | |
# Tokenize sentences | |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') | |
# Compute token embeddings | |
with torch.no_grad(): | |
model_output = model(**encoded_input) | |
# Perform pooling. In this case, max pooling. | |
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) | |
print("Sentence embeddings:") | |
print(sentence_embeddings) | |
``` | |
## Evaluation Results | |
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) | |
## Full Model Architecture | |
``` | |
SentenceTransformer( | |
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel | |
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) | |
) | |
``` | |
## Citing & Authors | |
This model was trained by [sentence-transformers](https://www.sbert.net/). | |
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): | |
```bibtex | |
@inproceedings{reimers-2019-sentence-bert, | |
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", | |
author = "Reimers, Nils and Gurevych, Iryna", | |
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", | |
month = "11", | |
year = "2019", | |
publisher = "Association for Computational Linguistics", | |
url = "http://arxiv.org/abs/1908.10084", | |
} | |
``` |