geninhu's picture
Update app.py
2f0d3a3
raw
history blame
1.82 kB
import math
import numpy as np
import pandas as pd
import gradio as gr
from huggingface_hub import from_pretrained_fastai
from fastai.vision.all import *
from torchvision.models import vgg19, vgg16
from utils import *
pascal_source = '.'
EXAMPLES_PATH = Path('./examples')
repo_id = "hugginglearners/fastai-style-transfer"
def _inner(feat_net, hooks, x):
feat_net(x)
return hooks.stored
def _get_layers(arch:str, pretrained=True):
"Get the layers and arch for a VGG Model (16 and 19 are supported only)"
feat_net = vgg19(pretrained=pretrained) if arch.find('9') > 1 else vgg16(pretrained=pretrained)
config = _vgg_config.get(arch)
features = feat_net.features.eval()
for p in features.parameters(): p.requires_grad=False
return feat_net, [features[i] for i in config]
_vgg_config = {
'vgg16' : [1, 11, 18, 25, 20],
'vgg19' : [1, 6, 11, 20, 29, 22]
}
feat_net, layers = _get_layers('vgg19', True)
hooks = hook_outputs(layers, detach=False)
learner = from_pretrained_fastai(repo_id)
def infer(img):
pred = learner.predict(img)
image = pred[0].numpy()
image = image.transpose((1, 2, 0))
plt.imshow(image)
return plt.gcf() #pred[0].show()
# get the inputs
inputs = gr.inputs.Image(shape=(192, 192))
# the app outputs two segmented images
output = gr.Plot()
# it's good practice to pass examples, description and a title to guide users
title = 'Style transfer'
description = ''
article = "Author: <a href=\"https://huggingface.co/geninhu\">Nhu Hoang</a>. "
examples = [f'{EXAMPLES_PATH}/{f.name}' for f in EXAMPLES_PATH.iterdir()]
gr.Interface(infer, inputs, output, examples= examples, allow_flagging='never', cache_examples=False,
title=title, description=description, article=article, live=False).launch(enable_queue=True, debug=False, inbrowser=False)