patrickvonplaten's picture
up
99e7a02
raw
history blame
6.44 kB
from huggingface_hub import HfApi
import pandas as pd
import os
import streamlit as st
import altair as alt
import numpy as np
import datetime
from huggingface_hub import Repository
from transformers.models.auto.configuration_auto import CONFIG_MAPPING_NAMES
from transformers.models.auto.modeling_auto import (
MODEL_FOR_CTC_MAPPING_NAMES,
MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES,
MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES,
MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING_NAMES,
MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES,
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES,
)
audio_models = list(MODEL_FOR_CTC_MAPPING_NAMES.keys()) + list(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES.keys()) + list(MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES.keys())
vision_models = ["clip"] + list(MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES.keys()) + list(MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING_NAMES.keys()) + list(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES.keys()) + list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES.keys()) + list(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES.keys()) + list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES.keys())
today = datetime.date.today()
year, week, _ = today.isocalendar()
DATASET_REPO_URL = (
"https://huggingface.co/datasets/patrickvonplaten/model-archs-downloads-space-data"
)
DATA_FILENAME = f"data_{week}_{year}.csv"
DATA_FILE = os.path.join("data", DATA_FILENAME)
HF_TOKEN = os.environ.get("HF_TOKEN")
print("is none?", HF_TOKEN is None)
def retrieve_model_stats():
hf_api = HfApi()
all_stats = {}
total_downloads = 0
for model_name in list(CONFIG_MAPPING_NAMES.keys()):
if model_name in audio_models:
modality = "audio"
elif model_name in vision_models:
modality = "vision"
else:
modality = "text"
model_stats = {
"num_downloads": 0,
"%_of_all_downloads": 0,
"num_models": 0,
"download_per_model": 0,
"modality": modality,
}
models = hf_api.list_models(filter=model_name)
model_stats["num_models"] = len(models)
model_stats["num_downloads"] = sum(
[m.downloads for m in models if hasattr(m, "downloads")]
)
if len(models) > 0:
model_stats["download_per_model"] = round(
model_stats["num_downloads"] / len(models), 2
)
total_downloads += model_stats["num_downloads"]
# save in overall dict
all_stats[model_name] = model_stats
for model_name in list(CONFIG_MAPPING_NAMES.keys()):
all_stats[model_name]["%_of_all_downloads"] = (
round(all_stats[model_name]["num_downloads"] / total_downloads, 5) * 100
) # noqa: E501
downloads = all_stats[model_name]["num_downloads"]
all_stats[model_name]["num_downloads"] = f"{downloads:,}"
sorted_results = dict(
reversed(sorted(all_stats.items(), key=lambda d: d[1]["%_of_all_downloads"]))
)
dataframe = pd.DataFrame.from_dict(sorted_results, orient="index")
# give header to model names
result = "model_names" + dataframe.to_csv()
return result
repo = Repository(local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN)
if not os.path.isfile(DATA_FILE):
st.title("You are the first this week!!! Please wait until the new data is generated and written")
result = retrieve_model_stats()
if not os.path.isfile(DATA_FILE):
with open(DATA_FILE, "w") as f:
f.write(result)
commit_url = repo.push_to_hub()
print(commit_url)
with open(DATA_FILE, "r") as f:
dataframe = pd.read_csv(DATA_FILE)
dataframe[dataframe["modality"] == "audio"]
int_downloads = np.array(
[int(x.replace(",", "")) for x in dataframe["num_downloads"].values]
)
st.title(f"Stats for year {year} and week {week}")
# print top 20 downloads
source = pd.DataFrame(
{
"Number of total downloads": int_downloads[:20],
"Model architecture name": dataframe["model_names"].values[:20],
}
)
bar_chart = (
alt.Chart(source)
.mark_bar()
.encode(
y="Number of total downloads",
x=alt.X("Model architecture name", sort=None),
)
)
st.title("Top 20 downloads last 30 days")
st.altair_chart(bar_chart, use_container_width=True)
# print bottom 20 downloads
source = pd.DataFrame(
{
"Number of total downloads": int_downloads[-20:],
"Model architecture name": dataframe["model_names"].values[-20:],
}
)
bar_chart = (
alt.Chart(source)
.mark_bar()
.encode(
y="Number of total downloads",
x=alt.X("Model architecture name", sort=None),
)
)
st.title("Bottom 20 downloads last 30 days")
st.altair_chart(bar_chart, use_container_width=True)
# print vision
df_vision = dataframe[dataframe["modality"] == "vision"]
vision_int_downloads = np.array(
[int(x.replace(",", "")) for x in df_vision["num_downloads"].values]
)
source = pd.DataFrame(
{
"Number of total downloads": vision_int_downloads,
"Model architecture name": df_vision["model_names"].values,
}
)
bar_chart = (
alt.Chart(source)
.mark_bar()
.encode(
y="Number of total downloads",
x=alt.X("Model architecture name", sort=None),
)
)
st.title("Vision downloads last 30 days")
st.altair_chart(bar_chart, use_container_width=True)
# print audio
df_audio = dataframe[dataframe["modality"] == "audio"]
audio_int_downloads = np.array(
[int(x.replace(",", "")) for x in df_audio["num_downloads"].values]
)
source = pd.DataFrame(
{
"Number of total downloads": audio_int_downloads,
"Model architecture name": df_audio["model_names"].values,
}
)
bar_chart = (
alt.Chart(source)
.mark_bar()
.encode(
y="Number of total downloads",
x=alt.X("Model architecture name", sort=None),
)
)
st.title("Audio downloads last 30 days")
st.altair_chart(bar_chart, use_container_width=True)
# print all stats
st.title("All stats last 30 days")
st.table(dataframe)
st.title("Vision stats last 30 days")
st.table(dataframe[dataframe["modality"] == "vision"])
st.title("Audio stats last 30 days")
st.table(dataframe[dataframe["modality"] == "audio"])