Spaces:
Runtime error
Runtime error
"""Ingest examples into Weaviate.""" | |
import os | |
from pathlib import Path | |
import weaviate | |
WEAVIATE_URL = os.environ["WEAVIATE_URL"] | |
client = weaviate.Client( | |
url=WEAVIATE_URL, | |
additional_headers={"X-OpenAI-Api-Key": os.environ["OPENAI_API_KEY"]}, | |
) | |
client.schema.delete_class("Rephrase") | |
client.schema.delete_class("QA") | |
client.schema.get() | |
schema = { | |
"classes": [ | |
{ | |
"class": "Rephrase", | |
"description": "Rephrase Examples", | |
"vectorizer": "text2vec-openai", | |
"moduleConfig": { | |
"text2vec-openai": { | |
"model": "ada", | |
"modelVersion": "002", | |
"type": "text", | |
} | |
}, | |
"properties": [ | |
{ | |
"dataType": ["text"], | |
"moduleConfig": { | |
"text2vec-openai": { | |
"skip": False, | |
"vectorizePropertyName": False, | |
} | |
}, | |
"name": "content", | |
}, | |
{ | |
"dataType": ["text"], | |
"description": "The link", | |
"moduleConfig": { | |
"text2vec-openai": { | |
"skip": True, | |
"vectorizePropertyName": False, | |
} | |
}, | |
"name": "question", | |
}, | |
{ | |
"dataType": ["text"], | |
"description": "The link", | |
"moduleConfig": { | |
"text2vec-openai": { | |
"skip": True, | |
"vectorizePropertyName": False, | |
} | |
}, | |
"name": "answer", | |
}, | |
{ | |
"dataType": ["text"], | |
"description": "The link", | |
"moduleConfig": { | |
"text2vec-openai": { | |
"skip": True, | |
"vectorizePropertyName": False, | |
} | |
}, | |
"name": "chat_history", | |
}, | |
], | |
}, | |
] | |
} | |
client.schema.create(schema) | |
documents = [ | |
{ | |
"question": "how do i load those?", | |
"chat_history": "Human: What types of memory exist?\nAssistant: \n\nThere are a few different types of memory: Buffer, Summary, and Conversational Memory.", | |
"answer": "How do I load Buffer, Summary, and Conversational Memory", | |
}, | |
{ | |
"question": "how do i install this package?", | |
"chat_history": "", | |
"answer": "How do I install langchain?", | |
}, | |
{ | |
"question": "how do I set serpapi_api_key?", | |
"chat_history": "Human: can you write me a code snippet for that?\nAssistant: \n\nYes, you can create an Agent with a custom LLMChain in LangChain. Here is a [link](https://langchain.readthedocs.io/en/latest/modules/agents/examples/custom_agent.html) to the documentation that provides a code snippet for creating a custom Agent.", | |
"answer": "How do I set the serpapi_api_key?", | |
}, | |
{ | |
"question": "What are some methods for data augmented generation?", | |
"chat_history": "Human: List all methods of an Agent class please\nAssistant: \n\nTo answer your question, you can find a list of all the methods of the Agent class in the [API reference documentation](https://langchain.readthedocs.io/en/latest/modules/agents/reference.html).", | |
"answer": "What are some methods for data augmented generation?", | |
}, | |
{ | |
"question": "can you write me a code snippet for that?", | |
"chat_history": "Human: how do I create an agent with custom LLMChain?\nAssistant: \n\nTo create an Agent with a custom LLMChain in LangChain, you can use the [Custom Agent example](https://langchain.readthedocs.io/en/latest/modules/agents/examples/custom_agent.html). This example shows how to create a custom LLMChain and use an existing Agent class to parse the output. For more information on Agents and Tools, check out the [Key Concepts](https://langchain.readthedocs.io/en/latest/modules/agents/key_concepts.html) documentation.", | |
"answer": "Can you provide a code snippet for creating an Agent with a custom LLMChain?", | |
}, | |
] | |
from langchain.prompts.example_selector.semantic_similarity import \ | |
sorted_values | |
for d in documents: | |
d["content"] = " ".join(sorted_values(d)) | |
with client.batch as batch: | |
for text in documents: | |
batch.add_data_object( | |
text, | |
"Rephrase", | |
) | |
client.schema.get() | |
schema = { | |
"classes": [ | |
{ | |
"class": "QA", | |
"description": "Rephrase Examples", | |
"vectorizer": "text2vec-openai", | |
"moduleConfig": { | |
"text2vec-openai": { | |
"model": "ada", | |
"modelVersion": "002", | |
"type": "text", | |
} | |
}, | |
"properties": [ | |
{ | |
"dataType": ["text"], | |
"moduleConfig": { | |
"text2vec-openai": { | |
"skip": False, | |
"vectorizePropertyName": False, | |
} | |
}, | |
"name": "content", | |
}, | |
{ | |
"dataType": ["text"], | |
"description": "The link", | |
"moduleConfig": { | |
"text2vec-openai": { | |
"skip": True, | |
"vectorizePropertyName": False, | |
} | |
}, | |
"name": "question", | |
}, | |
{ | |
"dataType": ["text"], | |
"description": "The link", | |
"moduleConfig": { | |
"text2vec-openai": { | |
"skip": True, | |
"vectorizePropertyName": False, | |
} | |
}, | |
"name": "answer", | |
}, | |
{ | |
"dataType": ["text"], | |
"description": "The link", | |
"moduleConfig": { | |
"text2vec-openai": { | |
"skip": True, | |
"vectorizePropertyName": False, | |
} | |
}, | |
"name": "summaries", | |
}, | |
{ | |
"dataType": ["text"], | |
"description": "The link", | |
"moduleConfig": { | |
"text2vec-openai": { | |
"skip": True, | |
"vectorizePropertyName": False, | |
} | |
}, | |
"name": "sources", | |
}, | |
], | |
}, | |
] | |
} | |
client.schema.create(schema) | |
documents = [ | |
{ | |
"question": "how do i install langchain?", | |
"answer": "```pip install langchain```", | |
"summaries": ">Example:\nContent:\n---------\nYou can pip install langchain package by running 'pip install langchain'\n----------\nSource: foo.html", | |
"sources": "foo.html", | |
}, | |
{ | |
"question": "how do i import an openai LLM?", | |
"answer": "```from langchain.llm import OpenAI```", | |
"summaries": ">Example:\nContent:\n---------\nyou can import the open ai wrapper (OpenAI) from the langchain.llm module\n----------\nSource: bar.html", | |
"sources": "bar.html", | |
}, | |
] | |
from langchain.prompts.example_selector.semantic_similarity import \ | |
sorted_values | |
for d in documents: | |
d["content"] = " ".join(sorted_values(d)) | |
with client.batch as batch: | |
for text in documents: | |
batch.add_data_object( | |
text, | |
"QA", | |
) | |