transformers-chat / chain.py
enoreyes's picture
Update chain.py
9acb8ea
raw
history blame
4.81 kB
import json
import os
import pathlib
import pickle
from typing import Dict, List, Tuple
import weaviate
from langchain import OpenAI, PromptTemplate
from langchain.chains import LLMChain
from langchain.chains.base import Chain
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
from langchain.chains.conversation.memory import ConversationBufferMemory
from langchain.chains.question_answering import load_qa_chain
from langchain.embeddings import OpenAIEmbeddings
from langchain.prompts import FewShotPromptTemplate, PromptTemplate
from langchain.prompts.example_selector import \
SemanticSimilarityExampleSelector
from langchain.vectorstores import FAISS, Weaviate
from pydantic import BaseModel
class CustomChain(Chain, BaseModel):
vstore: FAISS
chain: BaseCombineDocumentsChain
key_word_extractor: Chain
@property
def input_keys(self) -> List[str]:
return ["question"]
@property
def output_keys(self) -> List[str]:
return ["answer"]
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
question = inputs["question"]
chat_history_str = _get_chat_history(inputs["chat_history"])
if chat_history_str:
new_question = self.key_word_extractor.run(
question=question, chat_history=chat_history_str
)
else:
new_question = question
print(new_question)
docs = self.vstore.similarity_search(new_question, k=4)
new_inputs = inputs.copy()
new_inputs["question"] = new_question
new_inputs["chat_history"] = chat_history_str
answer, _ = self.chain.combine_docs(docs, **new_inputs)
return {"answer": answer}
def get_new_chain1(vectorstore, rephraser_llm, final_output_llm) -> Chain:
_eg_template = """## Example:
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question: {answer}"""
_eg_prompt = PromptTemplate(
template=_eg_template,
input_variables=["chat_history", "question", "answer"],
)
_prefix = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question. You should assume that the question is related to Hugging Face Code."""
_suffix = """## Example:
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:"""
#### LOAD VSTORE WITH REPHRASE EXAMPLES
with open("rephrase_eg.pkl", 'rb') as f:
rephrase_example_selector = pickle.load(f)
prompt = FewShotPromptTemplate(
prefix=_prefix,
suffix=_suffix,
example_selector=rephrase_example_selector,
example_prompt=_eg_prompt,
input_variables=["question", "chat_history"],
)
key_word_extractor = LLMChain(llm=rephraser_llm, prompt=prompt)
EXAMPLE_PROMPT = PromptTemplate(
template=">Example:\nContent:\n---------\n{page_content}\n----------\nSource: {source}",
input_variables=["page_content", "source"],
)
template = """You are an AI assistant for the open source transformers library provided by Hugging Face. The documentation is located at https://huggingface.co/docs/transformers.
You are given the following extracted parts of a long document and a question. Provide a conversational answer with a hyperlink to the documentation. Do NOT add .html to the end of links.
You should only use hyperlinks that are explicitly listed as a source in the context. Do NOT make up a hyperlink that is not listed.
If the question includes a request for code, provide a code block directly from the documentation.
For example, if someone asks how to install Transformers, you should say:
You can install with pip, for more info view the (documentation)[https://huggingface.co/docs/transformers/installation]
'''py
pip install transformers
'''
If you don't know the answer, just say "Hmm, I'm not sure." Don't try to make up an answer.
If the question is not about Hugging Face Transformers, politely inform them that you are tuned to only answer questions about Transformers.
Question: {question}
=========
{context}
=========
Answer in Markdown:"""
PROMPT = PromptTemplate(template=template, input_variables=["question", "context"])
doc_chain = load_qa_chain(
final_output_llm,
chain_type="stuff",
prompt=PROMPT,
document_prompt=EXAMPLE_PROMPT,
verbose=True
)
return CustomChain(chain=doc_chain, vstore=vectorstore, key_word_extractor=key_word_extractor)
def _get_chat_history(chat_history: List[Tuple[str, str]]):
buffer = ""
for human_s, ai_s in chat_history:
human = f"Human: " + human_s
ai = f"Assistant: " + ai_s
buffer += "\n" + "\n".join([human, ai])
return buffer