Spaces:
Configuration error
Configuration error
# Basic example for doing model-in-the-loop dynamic adversarial data collection | |
# using Gradio Blocks. | |
import json | |
import os | |
import threading | |
import time | |
import uuid | |
from concurrent.futures import ThreadPoolExecutor | |
from pathlib import Path | |
from typing import List | |
from urllib.parse import parse_qs | |
import gradio as gr | |
from dotenv import load_dotenv | |
from huggingface_hub import Repository | |
from langchain import ConversationChain | |
from langchain.chains.conversation.memory import ConversationBufferMemory | |
from langchain.llms import HuggingFaceHub | |
from langchain.prompts import load_prompt | |
from utils import force_git_push | |
def generate_respone(chatbot: ConversationChain, input: str) -> str: | |
"""Generates a response for a `langchain` chatbot.""" | |
return chatbot.predict(input=input) | |
def generate_responses(chatbots: List[ConversationChain], inputs: List[str]) -> List[str]: | |
"""Generates parallel responses for a list of `langchain` chatbots.""" | |
results = [] | |
with ThreadPoolExecutor(max_workers=100) as executor: | |
for result in executor.map(generate_respone, chatbots, inputs): | |
results.append(result) | |
return results | |
# These variables are for storing the MTurk HITs in a Hugging Face dataset. | |
if Path(".env").is_file(): | |
load_dotenv(".env") | |
DATASET_REPO_URL = os.getenv("DATASET_REPO_URL") | |
FORCE_PUSH = os.getenv("FORCE_PUSH") | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
PROMPT_TEMPLATES = Path("prompt_templates") | |
DATA_FILENAME = "data.jsonl" | |
DATA_FILE = os.path.join("data", DATA_FILENAME) | |
repo = Repository( | |
local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN | |
) | |
TOTAL_CNT = 3 # How many user inputs per HIT | |
# This function pushes the HIT data written in data.jsonl to our Hugging Face | |
# dataset every minute. Adjust the frequency to suit your needs. | |
PUSH_FREQUENCY = 60 | |
def asynchronous_push(f_stop): | |
if repo.is_repo_clean(): | |
print("Repo currently clean. Ignoring push_to_hub") | |
else: | |
repo.git_add(auto_lfs_track=True) | |
repo.git_commit("Auto commit by space") | |
if FORCE_PUSH == "yes": | |
force_git_push(repo) | |
else: | |
repo.git_push() | |
if not f_stop.is_set(): | |
# call again in 60 seconds | |
threading.Timer(PUSH_FREQUENCY, asynchronous_push, [f_stop]).start() | |
f_stop = threading.Event() | |
asynchronous_push(f_stop) | |
# Now let's run the app! | |
prompt = load_prompt(PROMPT_TEMPLATES / "openai_chatgpt.json") | |
# TODO: update this list with better, instruction-trained models | |
MODEL_IDS = ["google/flan-t5-xl", "bigscience/T0_3B", "EleutherAI/gpt-j-6B"] | |
chatbots = [] | |
for model_id in MODEL_IDS: | |
chatbots.append(ConversationChain( | |
llm=HuggingFaceHub( | |
repo_id=model_id, | |
model_kwargs={"temperature": 1}, | |
huggingfacehub_api_token=HF_TOKEN, | |
), | |
prompt=prompt, | |
verbose=False, | |
memory=ConversationBufferMemory(ai_prefix="Assistant"), | |
)) | |
model_id2model = {chatbot.llm.repo_id: chatbot for chatbot in chatbots} | |
demo = gr.Blocks() | |
with demo: | |
dummy = gr.Textbox(visible=False) # dummy for passing assignmentId | |
# We keep track of state as a JSON | |
state_dict = { | |
"conversation_id": str(uuid.uuid4()), | |
"assignmentId": "", | |
"cnt": 0, "data": [], | |
"past_user_inputs": [], | |
"generated_responses": [], | |
} | |
for idx in range(len(chatbots)): | |
state_dict[f"response_{idx+1}"] = "" | |
state = gr.JSON(state_dict, visible=False) | |
gr.Markdown("# Talk to the assistant") | |
state_display = gr.Markdown(f"Your messages: 0/{TOTAL_CNT}") | |
# Generate model prediction | |
def _predict(txt, state): | |
start = time.time() | |
responses = generate_responses(chatbots, [txt] * len(chatbots)) | |
print(f"Time taken to generate {len(chatbots)} responses : {time.time() - start:.2f} seconds") | |
response2model_id = {} | |
for chatbot, response in zip(chatbots, responses): | |
response2model_id[response] = chatbot.llm.repo_id | |
state["cnt"] += 1 | |
new_state_md = f"Inputs remaining in HIT: {state['cnt']}/{TOTAL_CNT}" | |
metadata = {"cnt": state["cnt"], "text": txt} | |
for idx, response in enumerate(responses): | |
metadata[f"response_{idx + 1}"] = response | |
metadata["response2model_id"] = response2model_id | |
state["data"].append(metadata) | |
state["past_user_inputs"].append(txt) | |
past_conversation_string = "<br />".join(["<br />".join(["Human π: " + user_input, "Assistant π€: " + model_response]) for user_input, model_response in zip(state["past_user_inputs"], state["generated_responses"] + [""])]) | |
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True, choices=responses, interactive=True, value=responses[0]), gr.update(value=past_conversation_string), state, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), new_state_md, dummy | |
def _select_response(selected_response, state, dummy): | |
done = state["cnt"] == TOTAL_CNT | |
state["generated_responses"].append(selected_response) | |
state["data"][-1]["selected_response"] = selected_response | |
state["data"][-1]["selected_model"] = state["data"][-1]["response2model_id"][selected_response] | |
if state["cnt"] == TOTAL_CNT: | |
# Write the HIT data to our local dataset because the worker has | |
# submitted everything now. | |
with open(DATA_FILE, "a") as jsonlfile: | |
json_data_with_assignment_id =\ | |
[json.dumps(dict({"assignmentId": state["assignmentId"], "conversation_id": state["conversation_id"]}, **datum)) for datum in state["data"]] | |
jsonlfile.write("\n".join(json_data_with_assignment_id) + "\n") | |
toggle_example_submit = gr.update(visible=not done) | |
past_conversation_string = "<br />".join(["<br />".join(["π: " + user_input, "π€: " + model_response]) for user_input, model_response in zip(state["past_user_inputs"], state["generated_responses"])]) | |
query = parse_qs(dummy[1:]) | |
if "assignmentId" in query and query["assignmentId"][0] != "ASSIGNMENT_ID_NOT_AVAILABLE": | |
# It seems that someone is using this app on mturk. We need to | |
# store the assignmentId in the state before submit_hit_button | |
# is clicked. We can do this here in _predict. We need to save the | |
# assignmentId so that the turker can get credit for their HIT. | |
state["assignmentId"] = query["assignmentId"][0] | |
toggle_final_submit = gr.update(visible=done) | |
toggle_final_submit_preview = gr.update(visible=False) | |
else: | |
toggle_final_submit_preview = gr.update(visible=done) | |
toggle_final_submit = gr.update(visible=False) | |
if done: | |
# Wipe the memory completely because we will be starting a new hit soon. | |
for chatbot in chatbots: | |
chatbot.memory = ConversationBufferMemory(ai_prefix="Assistant") | |
else: | |
# Sync all of the model's memories with the conversation path that | |
# was actually taken. | |
for chatbot in chatbots: | |
chatbot.memory = model_id2model[state["data"][-1]["response2model_id"][selected_response]].memory | |
text_input = gr.update(visible=False) if done else gr.update(visible=True) | |
return gr.update(visible=False), gr.update(visible=True), text_input, gr.update(visible=False), state, gr.update(value=past_conversation_string), toggle_example_submit, toggle_final_submit, toggle_final_submit_preview, dummy | |
# Input fields | |
past_conversation = gr.Markdown() | |
text_input = gr.Textbox(placeholder="Enter a statement", show_label=False) | |
select_response = gr.Radio(choices=[None, None], visible=False, label="Choose the most helpful and honest response") | |
select_response_button = gr.Button("Select Response", visible=False) | |
with gr.Column() as example_submit: | |
submit_ex_button = gr.Button("Submit") | |
with gr.Column(visible=False) as final_submit: | |
submit_hit_button = gr.Button("Submit HIT") | |
with gr.Column(visible=False) as final_submit_preview: | |
submit_hit_button_preview = gr.Button("Submit Work (preview mode; no MTurk HIT credit, but your examples will still be stored)") | |
# Button event handlers | |
get_window_location_search_js = """ | |
function(select_response, state, dummy) { | |
return [select_response, state, window.location.search]; | |
} | |
""" | |
select_response_button.click( | |
_select_response, | |
inputs=[select_response, state, dummy], | |
outputs=[select_response, example_submit, text_input, select_response_button, state, past_conversation, example_submit, final_submit, final_submit_preview, dummy], | |
_js=get_window_location_search_js, | |
) | |
submit_ex_button.click( | |
_predict, | |
inputs=[text_input, state], | |
outputs=[text_input, select_response_button, select_response, past_conversation, state, example_submit, final_submit, final_submit_preview, state_display], | |
) | |
post_hit_js = """ | |
function(state) { | |
// If there is an assignmentId, then the submitter is on mturk | |
// and has accepted the HIT. So, we need to submit their HIT. | |
const form = document.createElement('form'); | |
form.action = 'https://workersandbox.mturk.com/mturk/externalSubmit'; | |
form.method = 'post'; | |
for (const key in state) { | |
const hiddenField = document.createElement('input'); | |
hiddenField.type = 'hidden'; | |
hiddenField.name = key; | |
hiddenField.value = state[key]; | |
form.appendChild(hiddenField); | |
}; | |
document.body.appendChild(form); | |
form.submit(); | |
return state; | |
} | |
""" | |
submit_hit_button.click( | |
lambda state: state, | |
inputs=[state], | |
outputs=[state], | |
_js=post_hit_js, | |
) | |
refresh_app_js = """ | |
function(state) { | |
// The following line here loads the app again so the user can | |
// enter in another preview-mode "HIT". | |
window.location.href = window.location.href; | |
return state; | |
} | |
""" | |
submit_hit_button_preview.click( | |
lambda state: state, | |
inputs=[state], | |
outputs=[state], | |
_js=refresh_app_js, | |
) | |
demo.launch() |