Spaces:
Running
Running
Leaderboard
Browse files- README.md +1 -1
- app.py +94 -87
- author_leaderboard_tab.py +32 -0
- df/PaperCentral.py +1 -1
- df/author_leaderboard.py +152 -0
README.md
CHANGED
@@ -5,7 +5,7 @@ emoji: ⚡
|
|
5 |
colorFrom: red
|
6 |
colorTo: purple
|
7 |
sdk: gradio
|
8 |
-
sdk_version:
|
9 |
app_file: app.py
|
10 |
pinned: false
|
11 |
header: mini
|
|
|
5 |
colorFrom: red
|
6 |
colorTo: purple
|
7 |
sdk: gradio
|
8 |
+
sdk_version: 5.0.2
|
9 |
app_file: app.py
|
10 |
pinned: false
|
11 |
header: mini
|
app.py
CHANGED
@@ -3,6 +3,7 @@ from df.PaperCentral import PaperCentral
|
|
3 |
from gradio_calendar import Calendar
|
4 |
from datetime import datetime, timedelta
|
5 |
from typing import Union, List
|
|
|
6 |
|
7 |
# Initialize the PaperCentral class instance
|
8 |
paper_central_df = PaperCentral()
|
@@ -11,97 +12,103 @@ paper_central_df = PaperCentral()
|
|
11 |
with gr.Blocks(css="style.css") as demo:
|
12 |
gr.Markdown("# Paper Central")
|
13 |
|
14 |
-
with gr.
|
15 |
-
gr.
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
with gr.Column():
|
37 |
-
# Define the checkbox group for Hugging Face options
|
38 |
-
cat_options = gr.CheckboxGroup(
|
39 |
-
label="Category",
|
40 |
-
choices=[
|
41 |
-
'cs.*',
|
42 |
-
'eess.*',
|
43 |
-
'econ.*',
|
44 |
-
'math.*',
|
45 |
-
'astro-ph.*',
|
46 |
-
'cond-mat.*',
|
47 |
-
'gr-qc',
|
48 |
-
'hep-ex',
|
49 |
-
'hep-lat',
|
50 |
-
'hep-ph',
|
51 |
-
'hep-th',
|
52 |
-
'math-ph',
|
53 |
-
'nlin.*',
|
54 |
-
'nucl-ex',
|
55 |
-
'nucl-th',
|
56 |
-
'physics.*',
|
57 |
-
'quant-ph',
|
58 |
-
'q-bio.*',
|
59 |
-
'q-fin.*',
|
60 |
-
'stat.*',
|
61 |
-
],
|
62 |
-
value=["cs.*"]
|
63 |
-
)
|
64 |
-
hf_options = gr.CheckboxGroup(
|
65 |
-
label="Hugging Face options",
|
66 |
-
choices=["🤗 paper-page", "datasets", "models", "spaces", "github"],
|
67 |
-
value=[],
|
68 |
-
elem_id="hf_options"
|
69 |
-
)
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
)
|
83 |
-
|
84 |
-
label="
|
85 |
-
|
|
|
|
|
86 |
)
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
|
107 |
# Define function to move to the next day
|
|
|
3 |
from gradio_calendar import Calendar
|
4 |
from datetime import datetime, timedelta
|
5 |
from typing import Union, List
|
6 |
+
from author_leaderboard_tab import author_leaderboard_tab
|
7 |
|
8 |
# Initialize the PaperCentral class instance
|
9 |
paper_central_df = PaperCentral()
|
|
|
12 |
with gr.Blocks(css="style.css") as demo:
|
13 |
gr.Markdown("# Paper Central")
|
14 |
|
15 |
+
with gr.Tab("Paper-central"):
|
16 |
+
with gr.Accordion(label="⭐Release notes", open=False):
|
17 |
+
gr.Markdown("""
|
18 |
+
- 8/10/2024 - MICCAI proceedings added
|
19 |
+
- 7/10/2024 - COLM2024 proceedings added
|
20 |
+
- 4/10/2024 - You can now filter by Title
|
21 |
+
""")
|
22 |
+
|
23 |
+
# Create a row for navigation buttons and calendar
|
24 |
+
with gr.Row():
|
25 |
+
with gr.Column(scale=1):
|
26 |
+
# Define the 'Next Day' and 'Previous Day' buttons
|
27 |
+
next_day_btn = gr.Button("Next Day")
|
28 |
+
prev_day_btn = gr.Button("Previous Day")
|
29 |
+
with gr.Column(scale=4):
|
30 |
+
# Define the calendar component for date selection
|
31 |
+
calendar = Calendar(
|
32 |
+
type="datetime",
|
33 |
+
label="Select a date",
|
34 |
+
info="Click the calendar icon to bring up the calendar.",
|
35 |
+
value=datetime.today().strftime('%Y-%m-%d') # Default to today's date
|
36 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
# Create a row for Hugging Face options and Conference options
|
39 |
+
with gr.Row():
|
40 |
+
with gr.Column():
|
41 |
+
# Define the checkbox group for Hugging Face options
|
42 |
+
cat_options = gr.CheckboxGroup(
|
43 |
+
label="Category",
|
44 |
+
choices=[
|
45 |
+
'cs.*',
|
46 |
+
'eess.*',
|
47 |
+
'econ.*',
|
48 |
+
'math.*',
|
49 |
+
'astro-ph.*',
|
50 |
+
'cond-mat.*',
|
51 |
+
'gr-qc',
|
52 |
+
'hep-ex',
|
53 |
+
'hep-lat',
|
54 |
+
'hep-ph',
|
55 |
+
'hep-th',
|
56 |
+
'math-ph',
|
57 |
+
'nlin.*',
|
58 |
+
'nucl-ex',
|
59 |
+
'nucl-th',
|
60 |
+
'physics.*',
|
61 |
+
'quant-ph',
|
62 |
+
'q-bio.*',
|
63 |
+
'q-fin.*',
|
64 |
+
'stat.*',
|
65 |
+
],
|
66 |
+
value=["cs.*"]
|
67 |
)
|
68 |
+
hf_options = gr.CheckboxGroup(
|
69 |
+
label="Hugging Face options",
|
70 |
+
choices=["🤗 artifacts", "datasets", "models", "spaces", "github"],
|
71 |
+
value=[],
|
72 |
+
elem_id="hf_options"
|
73 |
)
|
74 |
|
75 |
+
with gr.Column():
|
76 |
+
# Define the checkbox group for Conference options
|
77 |
+
conference_options = gr.CheckboxGroup(
|
78 |
+
label="Conference options",
|
79 |
+
choices=["In proceedings"] + PaperCentral.CONFERENCES
|
80 |
+
)
|
81 |
+
with gr.Row():
|
82 |
+
# Define a Textbox for author search
|
83 |
+
author_search = gr.Textbox(
|
84 |
+
label="Search Authors",
|
85 |
+
placeholder="Enter author name",
|
86 |
+
)
|
87 |
+
title_search = gr.Textbox(
|
88 |
+
label="Search Title",
|
89 |
+
placeholder="Enter keywords",
|
90 |
+
)
|
91 |
+
|
92 |
+
# Define the Dataframe component to display paper data
|
93 |
+
# List of columns in your DataFrame
|
94 |
+
columns = paper_central_df.COLUMNS_START_PAPER_PAGE
|
95 |
+
|
96 |
+
paper_central_component = gr.Dataframe(
|
97 |
+
label="Paper Data",
|
98 |
+
value=paper_central_df.df_prettified[columns],
|
99 |
+
datatype=[
|
100 |
+
paper_central_df.DATATYPES[column]
|
101 |
+
for column in columns
|
102 |
+
],
|
103 |
+
row_count=(0, "dynamic"),
|
104 |
+
interactive=False,
|
105 |
+
max_height=1000,
|
106 |
+
elem_id="table",
|
107 |
+
wrap=True,
|
108 |
+
)
|
109 |
+
|
110 |
+
with gr.Tab("Leaderboard"):
|
111 |
+
author_leaderboard_tab()
|
112 |
|
113 |
|
114 |
# Define function to move to the next day
|
author_leaderboard_tab.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from df.author_leaderboard import AuthorLeaderboard
|
3 |
+
|
4 |
+
def author_leaderboard_tab():
|
5 |
+
# Initialize the AuthorLeaderboard class
|
6 |
+
leaderboard = AuthorLeaderboard()
|
7 |
+
|
8 |
+
with gr.Row():
|
9 |
+
gr.Markdown("## Author Leaderboard")
|
10 |
+
with gr.Row():
|
11 |
+
author_search_input = gr.Textbox(
|
12 |
+
label="Search by Author Name",
|
13 |
+
placeholder="Enter author name...",
|
14 |
+
lines=1,
|
15 |
+
)
|
16 |
+
with gr.Row():
|
17 |
+
leaderboard_component = gr.Dataframe(
|
18 |
+
label="Leaderboard",
|
19 |
+
value=leaderboard.df_prettified,
|
20 |
+
datatype=[leaderboard.DATATYPES[column] for column in leaderboard.COLUMNS_ORDER],
|
21 |
+
row_count=(0, "dynamic"),
|
22 |
+
interactive=False,
|
23 |
+
max_height=1000,
|
24 |
+
wrap=True,
|
25 |
+
)
|
26 |
+
|
27 |
+
# Define the interaction
|
28 |
+
author_search_input.change(
|
29 |
+
leaderboard.filter,
|
30 |
+
inputs=[author_search_input],
|
31 |
+
outputs=[leaderboard_component]
|
32 |
+
)
|
df/PaperCentral.py
CHANGED
@@ -356,7 +356,7 @@ class PaperCentral:
|
|
356 |
|
357 |
# HF options
|
358 |
if hf_options:
|
359 |
-
if "🤗
|
360 |
# Filter rows where 'paper_page' is not empty or NaN
|
361 |
filtered_df = filtered_df[
|
362 |
(filtered_df['paper_page'] != "") & (filtered_df['paper_page'].notna())
|
|
|
356 |
|
357 |
# HF options
|
358 |
if hf_options:
|
359 |
+
if "🤗 artifacts" in hf_options:
|
360 |
# Filter rows where 'paper_page' is not empty or NaN
|
361 |
filtered_df = filtered_df[
|
362 |
(filtered_df['paper_page'] != "") & (filtered_df['paper_page'].notna())
|
df/author_leaderboard.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from typing import List, Dict, Optional
|
3 |
+
import gradio as gr
|
4 |
+
from datasets import load_dataset
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
class AuthorLeaderboard:
|
8 |
+
"""
|
9 |
+
A class to manage and process author leaderboard data for display in a Gradio Dataframe component.
|
10 |
+
"""
|
11 |
+
|
12 |
+
# Class-level constants defining columns and their data types
|
13 |
+
COLUMNS_ORDER: List[str] = [
|
14 |
+
'Rank',
|
15 |
+
'Author',
|
16 |
+
'Total Artifacts',
|
17 |
+
'Avg Artifacts per Paper',
|
18 |
+
'Total Papers',
|
19 |
+
'Total Models',
|
20 |
+
'Total Datasets',
|
21 |
+
'Total Spaces',
|
22 |
+
'Upvotes',
|
23 |
+
'Comments',
|
24 |
+
]
|
25 |
+
|
26 |
+
DATATYPES: Dict[str, str] = {
|
27 |
+
'Rank': 'str',
|
28 |
+
'Author': 'markdown',
|
29 |
+
'Total Artifacts': 'int',
|
30 |
+
'Avg Artifacts per Paper': 'float',
|
31 |
+
'Total Papers': 'int',
|
32 |
+
'Total Models': 'int',
|
33 |
+
'Total Datasets': 'int',
|
34 |
+
'Total Spaces': 'int',
|
35 |
+
'Upvotes': 'int',
|
36 |
+
'Comments': 'int',
|
37 |
+
}
|
38 |
+
|
39 |
+
EMOTICONS = {
|
40 |
+
1: '🥇',
|
41 |
+
2: '🥈',
|
42 |
+
3: '🥉'
|
43 |
+
}
|
44 |
+
|
45 |
+
def __init__(self):
|
46 |
+
"""
|
47 |
+
Initialize the AuthorLeaderboard class by loading and processing the dataset.
|
48 |
+
"""
|
49 |
+
self.df_raw: pd.DataFrame = self.get_df()
|
50 |
+
self.df_prettified: pd.DataFrame = self.prettify(self.df_raw)
|
51 |
+
|
52 |
+
@staticmethod
|
53 |
+
def get_df() -> pd.DataFrame:
|
54 |
+
"""
|
55 |
+
Load and process the leaderboard dataset.
|
56 |
+
|
57 |
+
Returns:
|
58 |
+
pd.DataFrame: The processed DataFrame.
|
59 |
+
"""
|
60 |
+
# Load the dataset from the Hugging Face Hub
|
61 |
+
dataset = load_dataset('IAMJB/paper-central-leaderboard', split='leaderboard')
|
62 |
+
df = dataset.to_pandas()
|
63 |
+
|
64 |
+
# Calculate total artifacts
|
65 |
+
df['Total Artifacts'] = df['num_models'] + df['num_datasets'] + df['num_spaces']
|
66 |
+
|
67 |
+
# Calculate average artifacts per paper
|
68 |
+
df['Avg Artifacts per Paper'] = df['Total Artifacts'] / df['num_papers']
|
69 |
+
df['Avg Artifacts per Paper'] = df['Avg Artifacts per Paper'].round(2)
|
70 |
+
|
71 |
+
# Rename columns for clarity
|
72 |
+
df.rename(columns={
|
73 |
+
'name': 'Author',
|
74 |
+
'num_papers': 'Total Papers',
|
75 |
+
'num_models': 'Total Models',
|
76 |
+
'num_datasets': 'Total Datasets',
|
77 |
+
'num_spaces': 'Total Spaces',
|
78 |
+
'upvotes': 'Upvotes',
|
79 |
+
'num_comments': 'Comments',
|
80 |
+
}, inplace=True)
|
81 |
+
|
82 |
+
return df
|
83 |
+
|
84 |
+
def prettify(self, df: pd.DataFrame) -> pd.DataFrame:
|
85 |
+
"""
|
86 |
+
Prettify the DataFrame by adding rankings, emoticons, and markdown links.
|
87 |
+
|
88 |
+
Args:
|
89 |
+
df (pd.DataFrame): The DataFrame to prettify.
|
90 |
+
|
91 |
+
Returns:
|
92 |
+
pd.DataFrame: The prettified DataFrame.
|
93 |
+
"""
|
94 |
+
df = df.copy()
|
95 |
+
|
96 |
+
# Sort authors by Total Artifacts descending
|
97 |
+
df.sort_values(by='Total Artifacts', ascending=False, inplace=True)
|
98 |
+
|
99 |
+
# Reset index to get ranks
|
100 |
+
df.reset_index(drop=True, inplace=True)
|
101 |
+
df.index += 1 # Start ranks from 1
|
102 |
+
|
103 |
+
# Add Rank column
|
104 |
+
df['Rank'] = df.index
|
105 |
+
|
106 |
+
# Add emoticons for top 3 ranks
|
107 |
+
df['Rank'] = df['Rank'].apply(lambda x: f"{self.EMOTICONS.get(x, '')} {x}" if x <= 3 else f"{x}")
|
108 |
+
|
109 |
+
# Convert 'Author' to markdown with profile links if 'username' is available
|
110 |
+
df['Author'] = df.apply(self._create_author_link, axis=1)
|
111 |
+
|
112 |
+
# Select columns to display
|
113 |
+
df = df[self.COLUMNS_ORDER]
|
114 |
+
|
115 |
+
return df
|
116 |
+
|
117 |
+
def _create_author_link(self, row: pd.Series) -> str:
|
118 |
+
"""
|
119 |
+
Create a markdown link for the author's profile.
|
120 |
+
|
121 |
+
Args:
|
122 |
+
row (pd.Series): A row from the DataFrame.
|
123 |
+
|
124 |
+
Returns:
|
125 |
+
str: The markdown link for the author.
|
126 |
+
"""
|
127 |
+
if pd.notna(row.get('username')) and row['username']:
|
128 |
+
profile_url = f"https://huggingface.co/{row['username']}"
|
129 |
+
return f"[{row['Author']}]({profile_url})"
|
130 |
+
else:
|
131 |
+
return row['Author']
|
132 |
+
|
133 |
+
def filter(self, author_search_input: Optional[str] = None) -> gr.update:
|
134 |
+
"""
|
135 |
+
Filter the DataFrame based on the author search input.
|
136 |
+
|
137 |
+
Args:
|
138 |
+
author_search_input (Optional[str]): The author name to search for.
|
139 |
+
|
140 |
+
Returns:
|
141 |
+
gr.Update: An update object for the Gradio Dataframe component.
|
142 |
+
"""
|
143 |
+
filtered_df: pd.DataFrame = self.df_prettified.copy()
|
144 |
+
|
145 |
+
if author_search_input:
|
146 |
+
search_string = author_search_input.lower()
|
147 |
+
filtered_df = filtered_df[filtered_df['Author'].str.lower().str.contains(search_string)]
|
148 |
+
|
149 |
+
# Get the corresponding data types for the columns
|
150 |
+
datatypes: List[str] = [self.DATATYPES.get(col, 'str') for col in filtered_df.columns]
|
151 |
+
|
152 |
+
return gr.update(value=filtered_df, datatype=datatypes)
|