Spaces:
Running
Running
jbdel
commited on
Commit
•
4e925af
0
Parent(s):
Initial commit
Browse files- app.py +329 -0
- constants.py +6 -0
- df/PaperCentral.py +443 -0
- requirements.txt +3 -0
- style.css +23 -0
- utils.py +16 -0
app.py
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from df.PaperCentral import PaperCentral
|
3 |
+
from gradio_calendar import Calendar
|
4 |
+
from datetime import datetime, timedelta
|
5 |
+
from typing import Union, List
|
6 |
+
|
7 |
+
# Initialize the PaperCentral class instance
|
8 |
+
paper_central_df = PaperCentral()
|
9 |
+
|
10 |
+
# Create the Gradio Blocks app with custom CSS
|
11 |
+
with gr.Blocks(css="style.css") as demo:
|
12 |
+
gr.Markdown("# Paper Central")
|
13 |
+
|
14 |
+
# Create a row for navigation buttons and calendar
|
15 |
+
with gr.Row():
|
16 |
+
with gr.Column(scale=1):
|
17 |
+
# Define the 'Next Day' and 'Previous Day' buttons
|
18 |
+
next_day_btn = gr.Button("Next Day")
|
19 |
+
prev_day_btn = gr.Button("Previous Day")
|
20 |
+
with gr.Column(scale=4):
|
21 |
+
# Define the calendar component for date selection
|
22 |
+
calendar = Calendar(
|
23 |
+
type="datetime",
|
24 |
+
label="Select a date",
|
25 |
+
info="Click the calendar icon to bring up the calendar.",
|
26 |
+
value=datetime.today().strftime('%Y-%m-%d') # Default to today's date
|
27 |
+
)
|
28 |
+
|
29 |
+
# Create a row for Hugging Face options and Conference options
|
30 |
+
with gr.Row():
|
31 |
+
with gr.Column():
|
32 |
+
# Define the checkbox group for Hugging Face options
|
33 |
+
cat_options = gr.CheckboxGroup(
|
34 |
+
label="Category",
|
35 |
+
choices=[
|
36 |
+
'cs.*',
|
37 |
+
'eess.*',
|
38 |
+
'econ.*',
|
39 |
+
'math.*',
|
40 |
+
'astro-ph.*',
|
41 |
+
'cond-mat.*',
|
42 |
+
'gr-qc',
|
43 |
+
'hep-ex',
|
44 |
+
'hep-lat',
|
45 |
+
'hep-ph',
|
46 |
+
'hep-th',
|
47 |
+
'math-ph',
|
48 |
+
'nlin.*',
|
49 |
+
'nucl-ex',
|
50 |
+
'nucl-th',
|
51 |
+
'physics.*',
|
52 |
+
'quant-ph',
|
53 |
+
'q-bio.*',
|
54 |
+
'q-fin.*',
|
55 |
+
'stat.*',
|
56 |
+
],
|
57 |
+
value=["cs.*"]
|
58 |
+
)
|
59 |
+
hf_options = gr.CheckboxGroup(
|
60 |
+
label="Hugging Face options",
|
61 |
+
choices=["show_details", "datasets", "models", "spaces"]
|
62 |
+
)
|
63 |
+
|
64 |
+
with gr.Column():
|
65 |
+
# Define the checkbox group for Conference options
|
66 |
+
conference_options = gr.CheckboxGroup(
|
67 |
+
label="Conference options",
|
68 |
+
choices=["In proceedings"] + PaperCentral.CONFERENCES
|
69 |
+
)
|
70 |
+
|
71 |
+
# Define the Dataframe component to display paper data
|
72 |
+
# List of columns in your DataFrame
|
73 |
+
columns = paper_central_df.COLUMNS_START_PAPER_PAGE
|
74 |
+
|
75 |
+
paper_central_component = gr.Dataframe(
|
76 |
+
label="Paper Data",
|
77 |
+
value=paper_central_df.df_prettified[columns],
|
78 |
+
datatype=[
|
79 |
+
paper_central_df.DATATYPES[column]
|
80 |
+
for column in columns
|
81 |
+
],
|
82 |
+
row_count=(0, "dynamic"),
|
83 |
+
interactive=False,
|
84 |
+
height=1000,
|
85 |
+
elem_id="table",
|
86 |
+
)
|
87 |
+
|
88 |
+
|
89 |
+
# Define function to move to the next day
|
90 |
+
def go_to_next_day(
|
91 |
+
date: Union[str, datetime],
|
92 |
+
cat_options_list: List[str],
|
93 |
+
hf_options_list: List[str],
|
94 |
+
conference_options_list: List[str]
|
95 |
+
) -> tuple:
|
96 |
+
"""
|
97 |
+
Moves the selected date to the next day and updates the data.
|
98 |
+
|
99 |
+
Args:
|
100 |
+
date (Union[str, datetime]): The current date selected in the calendar.
|
101 |
+
cat_options_list (List[str]): List of selected Category options.
|
102 |
+
hf_options_list (List[str]): List of selected Hugging Face options.
|
103 |
+
conference_options_list (List[str]): List of selected Conference options.
|
104 |
+
|
105 |
+
Returns:
|
106 |
+
tuple: The new date as a string and the updated Dataframe component.
|
107 |
+
"""
|
108 |
+
# Ensure the date is in string format
|
109 |
+
if isinstance(date, datetime):
|
110 |
+
date_str = date.strftime('%Y-%m-%d')
|
111 |
+
else:
|
112 |
+
date_str = date
|
113 |
+
|
114 |
+
# Parse the date string and add one day
|
115 |
+
new_date = datetime.strptime(date_str, '%Y-%m-%d') + timedelta(days=1)
|
116 |
+
new_date_str = new_date.strftime('%Y-%m-%d')
|
117 |
+
|
118 |
+
# Update the Dataframe
|
119 |
+
updated_data = paper_central_df.filter(
|
120 |
+
selected_date=new_date_str,
|
121 |
+
cat_options=cat_options_list,
|
122 |
+
hf_options=hf_options_list,
|
123 |
+
conference_options=conference_options_list
|
124 |
+
)
|
125 |
+
|
126 |
+
# Return the new date and updated Dataframe
|
127 |
+
return new_date_str, updated_data
|
128 |
+
|
129 |
+
|
130 |
+
# Define function to move to the previous day
|
131 |
+
def go_to_previous_day(
|
132 |
+
date: Union[str, datetime],
|
133 |
+
cat_options_list: List[str],
|
134 |
+
hf_options_list: List[str],
|
135 |
+
conference_options_list: List[str]
|
136 |
+
) -> tuple:
|
137 |
+
"""
|
138 |
+
Moves the selected date to the previous day and updates the data.
|
139 |
+
|
140 |
+
Args:
|
141 |
+
date (Union[str, datetime]): The current date selected in the calendar.
|
142 |
+
cat_options_list (List[str]): List of selected Category options.
|
143 |
+
hf_options_list (List[str]): List of selected Hugging Face options.
|
144 |
+
conference_options_list (List[str]): List of selected Conference options.
|
145 |
+
|
146 |
+
Returns:
|
147 |
+
tuple: The new date as a string and the updated Dataframe component.
|
148 |
+
"""
|
149 |
+
# Ensure the date is in string format
|
150 |
+
if isinstance(date, datetime):
|
151 |
+
date_str = date.strftime('%Y-%m-%d')
|
152 |
+
else:
|
153 |
+
date_str = date
|
154 |
+
|
155 |
+
# Parse the date string and subtract one day
|
156 |
+
new_date = datetime.strptime(date_str, '%Y-%m-%d') - timedelta(days=1)
|
157 |
+
new_date_str = new_date.strftime('%Y-%m-%d')
|
158 |
+
|
159 |
+
# Update the Dataframe
|
160 |
+
updated_data = paper_central_df.filter(
|
161 |
+
selected_date=new_date_str,
|
162 |
+
cat_options=cat_options_list,
|
163 |
+
hf_options=hf_options_list,
|
164 |
+
conference_options=conference_options_list
|
165 |
+
)
|
166 |
+
|
167 |
+
# Return the new date and updated Dataframe
|
168 |
+
return new_date_str, updated_data
|
169 |
+
|
170 |
+
|
171 |
+
# Define function to update data when date or options change
|
172 |
+
def update_data(
|
173 |
+
date: Union[str, datetime],
|
174 |
+
cat_options_list: List[str],
|
175 |
+
hf_options_list: List[str],
|
176 |
+
conference_options_list: List[str]
|
177 |
+
):
|
178 |
+
"""
|
179 |
+
Updates the data displayed in the Dataframe based on the selected date and options.
|
180 |
+
|
181 |
+
Args:
|
182 |
+
date (Union[str, datetime]): The selected date.
|
183 |
+
cat_options_list (List[str]): List of selected Category options.
|
184 |
+
hf_options_list (List[str]): List of selected Hugging Face options.
|
185 |
+
conference_options_list (List[str]): List of selected Conference options.
|
186 |
+
|
187 |
+
Returns:
|
188 |
+
gr.Dataframe.update: An update object for the Dataframe component.
|
189 |
+
"""
|
190 |
+
return paper_central_df.filter(
|
191 |
+
selected_date=date,
|
192 |
+
cat_options=cat_options_list,
|
193 |
+
hf_options=hf_options_list,
|
194 |
+
conference_options=conference_options_list
|
195 |
+
)
|
196 |
+
|
197 |
+
|
198 |
+
# Function to handle conference options change
|
199 |
+
def on_conference_options_change(
|
200 |
+
date: Union[str, datetime],
|
201 |
+
cat_options_list: List[str],
|
202 |
+
hf_options_list: List[str],
|
203 |
+
conference_options_list: List[str]
|
204 |
+
):
|
205 |
+
|
206 |
+
cat_options_update = gr.update()
|
207 |
+
paper_central_component_update = gr.update()
|
208 |
+
visible = True
|
209 |
+
|
210 |
+
# Some conference options are selected
|
211 |
+
# Update cat_options to empty list
|
212 |
+
if conference_options_list:
|
213 |
+
cat_options_update = gr.update(value=[])
|
214 |
+
paper_central_component_update = update_data(
|
215 |
+
date,
|
216 |
+
[],
|
217 |
+
hf_options_list,
|
218 |
+
conference_options_list,
|
219 |
+
)
|
220 |
+
visible = False
|
221 |
+
|
222 |
+
calendar_update = gr.update(visible=visible)
|
223 |
+
next_day_btn_update = gr.update(visible=visible)
|
224 |
+
prev_day_btn_update = gr.update(visible=visible)
|
225 |
+
|
226 |
+
return paper_central_component_update, cat_options_update, calendar_update, next_day_btn_update, prev_day_btn_update
|
227 |
+
|
228 |
+
|
229 |
+
# Function to handle category options change
|
230 |
+
def on_cat_options_change(
|
231 |
+
date: Union[str, datetime],
|
232 |
+
cat_options_list: List[str],
|
233 |
+
hf_options_list: List[str],
|
234 |
+
conference_options_list: List[str]
|
235 |
+
):
|
236 |
+
conference_options_update = gr.update()
|
237 |
+
paper_central_component_update = gr.update()
|
238 |
+
visible = False
|
239 |
+
|
240 |
+
# Some category options are selected
|
241 |
+
# Update conference_options to empty list
|
242 |
+
if cat_options_list:
|
243 |
+
conference_options_update = gr.update(value=[])
|
244 |
+
paper_central_component_update = update_data(
|
245 |
+
date,
|
246 |
+
cat_options_list,
|
247 |
+
hf_options_list,
|
248 |
+
[],
|
249 |
+
)
|
250 |
+
visible = True
|
251 |
+
|
252 |
+
calendar_update = gr.update(visible=visible)
|
253 |
+
next_day_btn_update = gr.update(visible=visible)
|
254 |
+
prev_day_btn_update = gr.update(visible=visible)
|
255 |
+
|
256 |
+
return paper_central_component_update, conference_options_update, calendar_update, next_day_btn_update, prev_day_btn_update
|
257 |
+
|
258 |
+
|
259 |
+
|
260 |
+
# Set up the event listener for the 'Next Day' button
|
261 |
+
next_day_btn.click(
|
262 |
+
fn=go_to_next_day,
|
263 |
+
inputs=[calendar, cat_options, hf_options, conference_options],
|
264 |
+
outputs=[calendar, paper_central_component],
|
265 |
+
)
|
266 |
+
|
267 |
+
# Set up the event listener for the 'Previous Day' button
|
268 |
+
prev_day_btn.click(
|
269 |
+
fn=go_to_previous_day,
|
270 |
+
inputs=[calendar, cat_options, hf_options, conference_options],
|
271 |
+
outputs=[calendar, paper_central_component],
|
272 |
+
)
|
273 |
+
|
274 |
+
# Define the inputs for the filter function
|
275 |
+
inputs = [
|
276 |
+
calendar,
|
277 |
+
cat_options,
|
278 |
+
hf_options,
|
279 |
+
conference_options,
|
280 |
+
]
|
281 |
+
|
282 |
+
# Set up the event listener for the calendar date change
|
283 |
+
calendar.change(
|
284 |
+
fn=update_data,
|
285 |
+
inputs=inputs,
|
286 |
+
outputs=paper_central_component,
|
287 |
+
)
|
288 |
+
|
289 |
+
# Set up the event listener for the Hugging Face options change
|
290 |
+
hf_options.change(
|
291 |
+
fn=update_data,
|
292 |
+
inputs=inputs,
|
293 |
+
outputs=paper_central_component,
|
294 |
+
)
|
295 |
+
|
296 |
+
# Event chaining for conference options change
|
297 |
+
conference_options.change(
|
298 |
+
fn=on_conference_options_change,
|
299 |
+
inputs=inputs,
|
300 |
+
outputs=[paper_central_component, cat_options, calendar, next_day_btn, prev_day_btn],
|
301 |
+
)
|
302 |
+
|
303 |
+
# Event chaining for category options change
|
304 |
+
cat_options.change(
|
305 |
+
fn=on_cat_options_change,
|
306 |
+
inputs=inputs,
|
307 |
+
outputs=[paper_central_component, conference_options, calendar, next_day_btn, prev_day_btn],
|
308 |
+
)
|
309 |
+
|
310 |
+
# Load the initial data when the app starts
|
311 |
+
demo.load(
|
312 |
+
fn=update_data,
|
313 |
+
inputs=inputs,
|
314 |
+
outputs=paper_central_component,
|
315 |
+
api_name=False,
|
316 |
+
)
|
317 |
+
|
318 |
+
|
319 |
+
# Define the main function to launch the app
|
320 |
+
def main():
|
321 |
+
"""
|
322 |
+
Launches the Gradio app.
|
323 |
+
"""
|
324 |
+
demo.launch()
|
325 |
+
|
326 |
+
|
327 |
+
# Run the main function when the script is executed
|
328 |
+
if __name__ == "__main__":
|
329 |
+
main()
|
constants.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
NEURIPS_ICO = ""
|
2 |
+
DATASET_ARXIV_SCAN_PAPERS = "IAMJB/scanned-arxiv-papers-id"
|
3 |
+
DATASET_CONFERENCE_PAPERS = "IAMJB/paper_conference_aggregate"
|
4 |
+
DATASET_DAILY_PAPERS = "hysts-bot-data/daily-papers"
|
5 |
+
DATASET_DAILY_PAPERS_STATS = "hysts-bot-data/daily-papers-stats"
|
6 |
+
DATASET_COMMUNITY_SCIENCE = "huggingface/community-science-paper-v2"
|
df/PaperCentral.py
ADDED
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from typing import List, Dict, Optional
|
3 |
+
from constants import (
|
4 |
+
DATASET_ARXIV_SCAN_PAPERS,
|
5 |
+
DATASET_CONFERENCE_PAPERS,
|
6 |
+
DATASET_COMMUNITY_SCIENCE,
|
7 |
+
NEURIPS_ICO,
|
8 |
+
)
|
9 |
+
import gradio as gr
|
10 |
+
from utils import load_and_process
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
|
14 |
+
class PaperCentral:
|
15 |
+
"""
|
16 |
+
A class to manage and process paper data for display in a Gradio Dataframe component.
|
17 |
+
"""
|
18 |
+
|
19 |
+
CONFERENCES = [
|
20 |
+
"ACL2023",
|
21 |
+
"ACL2024",
|
22 |
+
"COLING2024",
|
23 |
+
"CVPR2023",
|
24 |
+
"CVPR2024",
|
25 |
+
"ECCV2024",
|
26 |
+
"EMNLP2023",
|
27 |
+
"NAACL2023",
|
28 |
+
"NeurIPS2023",
|
29 |
+
"NeurIPS2023 D&B",
|
30 |
+
]
|
31 |
+
CONFERENCES_ICONS = {
|
32 |
+
"ACL2023": 'https://aclanthology.org/aclicon.ico',
|
33 |
+
"ACL2024": 'https://aclanthology.org/aclicon.ico',
|
34 |
+
"COLING2024": 'https://aclanthology.org/aclicon.ico',
|
35 |
+
"CVPR2023": "https://openaccess.thecvf.com/favicon.ico",
|
36 |
+
"CVPR2024": "https://openaccess.thecvf.com/favicon.ico",
|
37 |
+
"ECCV2024": "https://openaccess.thecvf.com/favicon.ico",
|
38 |
+
"EMNLP2023": 'https://aclanthology.org/aclicon.ico',
|
39 |
+
"NAACL2023": 'https://aclanthology.org/aclicon.ico',
|
40 |
+
"NeurIPS2023": NEURIPS_ICO,
|
41 |
+
"NeurIPS2023 D&B": NEURIPS_ICO,
|
42 |
+
}
|
43 |
+
|
44 |
+
# Class-level constants defining columns and their data types
|
45 |
+
COLUMNS_START_PAPER_PAGE: List[str] = [
|
46 |
+
'date',
|
47 |
+
'arxiv_id',
|
48 |
+
'paper_page',
|
49 |
+
'title',
|
50 |
+
]
|
51 |
+
|
52 |
+
COLUMNS_ORDER_PAPER_PAGE: List[str] = [
|
53 |
+
'date',
|
54 |
+
'arxiv_id',
|
55 |
+
'paper_page',
|
56 |
+
'num_models',
|
57 |
+
'num_datasets',
|
58 |
+
'num_spaces',
|
59 |
+
'conference_name',
|
60 |
+
'id',
|
61 |
+
'type',
|
62 |
+
'proceedings',
|
63 |
+
'title',
|
64 |
+
'upvotes',
|
65 |
+
'num_comments',
|
66 |
+
]
|
67 |
+
|
68 |
+
DATATYPES: Dict[str, str] = {
|
69 |
+
'date': 'str',
|
70 |
+
'arxiv_id': 'markdown',
|
71 |
+
'paper_page': 'markdown',
|
72 |
+
'upvotes': 'str',
|
73 |
+
'num_comments': 'str',
|
74 |
+
'num_models': 'markdown',
|
75 |
+
'num_datasets': 'markdown',
|
76 |
+
'num_spaces': 'markdown',
|
77 |
+
'title': 'str',
|
78 |
+
'proceedings': 'markdown',
|
79 |
+
'conference_name': 'str',
|
80 |
+
'id': 'str',
|
81 |
+
'type': 'str',
|
82 |
+
}
|
83 |
+
|
84 |
+
# Mapping for renaming columns for display purposes
|
85 |
+
COLUMN_RENAME_MAP: Dict[str, str] = {
|
86 |
+
'num_models': 'models',
|
87 |
+
'num_spaces': 'spaces',
|
88 |
+
'num_datasets': 'datasets',
|
89 |
+
'conference_name': 'venue',
|
90 |
+
}
|
91 |
+
|
92 |
+
def __init__(self):
|
93 |
+
"""
|
94 |
+
Initialize the PaperCentral class by loading and processing the datasets.
|
95 |
+
"""
|
96 |
+
self.df_raw: pd.DataFrame = self.get_df()
|
97 |
+
self.df_prettified: pd.DataFrame = self.prettify(self.df_raw)
|
98 |
+
|
99 |
+
@staticmethod
|
100 |
+
def get_columns_order(columns: List[str]) -> List[str]:
|
101 |
+
"""
|
102 |
+
Get columns ordered according to COLUMNS_ORDER_PAPER_PAGE.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
columns (List[str]): List of column names to order.
|
106 |
+
|
107 |
+
Returns:
|
108 |
+
List[str]: Ordered list of column names.
|
109 |
+
"""
|
110 |
+
return [c for c in PaperCentral.COLUMNS_ORDER_PAPER_PAGE if c in columns]
|
111 |
+
|
112 |
+
@staticmethod
|
113 |
+
def get_columns_datatypes(columns: List[str]) -> List[str]:
|
114 |
+
"""
|
115 |
+
Get data types for the specified columns.
|
116 |
+
|
117 |
+
Args:
|
118 |
+
columns (List[str]): List of column names.
|
119 |
+
|
120 |
+
Returns:
|
121 |
+
List[str]: List of data types corresponding to the columns.
|
122 |
+
"""
|
123 |
+
return [PaperCentral.DATATYPES[c] for c in columns]
|
124 |
+
|
125 |
+
@staticmethod
|
126 |
+
def get_df() -> pd.DataFrame:
|
127 |
+
"""
|
128 |
+
Load and merge datasets to create the raw DataFrame.
|
129 |
+
|
130 |
+
Returns:
|
131 |
+
pd.DataFrame: The merged and processed DataFrame.
|
132 |
+
"""
|
133 |
+
# Load datasets
|
134 |
+
arxiv_scan_papers: pd.DataFrame = load_and_process(DATASET_ARXIV_SCAN_PAPERS)[
|
135 |
+
['arxiv_id', 'published_date', 'categories', 'title', 'primary_category',
|
136 |
+
'huggingface_urls']
|
137 |
+
]
|
138 |
+
arxiv_scan_papers['published_date'] = pd.to_datetime(arxiv_scan_papers['published_date']) + pd.DateOffset(
|
139 |
+
days=1)
|
140 |
+
|
141 |
+
community_science_papers: pd.DataFrame = load_and_process(DATASET_COMMUNITY_SCIENCE)[
|
142 |
+
['arxiv_id', 'date', 'upvotes', 'num_comments', 'github', 'num_models', 'num_datasets', 'num_spaces',
|
143 |
+
'title']
|
144 |
+
]
|
145 |
+
|
146 |
+
conference_papers: pd.DataFrame = load_and_process(DATASET_CONFERENCE_PAPERS)[
|
147 |
+
['id', 'proceedings', 'type', 'arxiv_id', 'title', 'conference_name']
|
148 |
+
]
|
149 |
+
|
150 |
+
# Merge arxiv_scan_papers and community_science_papers on 'arxiv_id'
|
151 |
+
merged_df: pd.DataFrame = pd.merge(arxiv_scan_papers, community_science_papers, on='arxiv_id', how='outer')
|
152 |
+
merged_df['title'] = merged_df['title_x'].combine_first(merged_df['title_y'])
|
153 |
+
merged_df = merged_df.drop(columns=['title_x', 'title_y'])
|
154 |
+
|
155 |
+
final_merged_df: pd.DataFrame = pd.merge(
|
156 |
+
merged_df,
|
157 |
+
conference_papers,
|
158 |
+
on='arxiv_id',
|
159 |
+
how='outer'
|
160 |
+
)
|
161 |
+
|
162 |
+
# Combine the 'title' columns into one
|
163 |
+
final_merged_df['title'] = final_merged_df['title_x'].combine_first(final_merged_df['title_y'])
|
164 |
+
|
165 |
+
# Drop the redundant 'title_x' and 'title_y' columns
|
166 |
+
final_merged_df = final_merged_df.drop(columns=['title_x', 'title_y'])
|
167 |
+
|
168 |
+
# Use 'date' from community_science_papers if available; otherwise, use 'published_date'
|
169 |
+
final_merged_df['date'] = final_merged_df['date'].combine_first(final_merged_df['published_date'])
|
170 |
+
final_merged_df.drop(columns=['published_date'], inplace=True)
|
171 |
+
|
172 |
+
# If 'arxiv_id' is in community_science_papers, set 'paper_page' to 'arxiv_id'
|
173 |
+
final_merged_df.loc[
|
174 |
+
final_merged_df['arxiv_id'].isin(community_science_papers['arxiv_id']), 'paper_page'
|
175 |
+
] = final_merged_df['arxiv_id']
|
176 |
+
|
177 |
+
# Format the 'date' column
|
178 |
+
final_merged_df = PaperCentral.format_df_date(final_merged_df, "date")
|
179 |
+
final_merged_df['date'] = final_merged_df['date'].astype(str)
|
180 |
+
|
181 |
+
print(final_merged_df.head())
|
182 |
+
return final_merged_df
|
183 |
+
|
184 |
+
@staticmethod
|
185 |
+
def format_df_date(df: pd.DataFrame, date_column: str = "date") -> pd.DataFrame:
|
186 |
+
"""
|
187 |
+
Format the date column in the DataFrame to 'YYYY-MM-DD'.
|
188 |
+
|
189 |
+
Args:
|
190 |
+
df (pd.DataFrame): The DataFrame to format.
|
191 |
+
date_column (str): The name of the date column.
|
192 |
+
|
193 |
+
Returns:
|
194 |
+
pd.DataFrame: The DataFrame with the formatted date column.
|
195 |
+
"""
|
196 |
+
df.loc[:, date_column] = pd.to_datetime(df[date_column]).dt.strftime('%Y-%m-%d')
|
197 |
+
return df
|
198 |
+
|
199 |
+
@staticmethod
|
200 |
+
def prettify(df: pd.DataFrame) -> pd.DataFrame:
|
201 |
+
"""
|
202 |
+
Prettify the DataFrame by adding markdown links and sorting.
|
203 |
+
|
204 |
+
Args:
|
205 |
+
df (pd.DataFrame): The DataFrame to prettify.
|
206 |
+
|
207 |
+
Returns:
|
208 |
+
pd.DataFrame: The prettified DataFrame.
|
209 |
+
"""
|
210 |
+
|
211 |
+
def update_row(row: pd.Series) -> pd.Series:
|
212 |
+
"""
|
213 |
+
Update a row by adding markdown links to 'paper_page' and 'arxiv_id' columns.
|
214 |
+
|
215 |
+
Args:
|
216 |
+
row (pd.Series): A row from the DataFrame.
|
217 |
+
|
218 |
+
Returns:
|
219 |
+
pd.Series: The updated row.
|
220 |
+
"""
|
221 |
+
# Process 'num_models' column
|
222 |
+
if (
|
223 |
+
'num_models' in row and pd.notna(row['num_models']) and row["arxiv_id"]
|
224 |
+
and float(row['num_models']) > 0
|
225 |
+
):
|
226 |
+
num_models = int(float(row['num_models']))
|
227 |
+
row['num_models'] = (
|
228 |
+
f"[{num_models}](https://huggingface.co/models?other=arxiv:{row['arxiv_id']})"
|
229 |
+
)
|
230 |
+
|
231 |
+
if (
|
232 |
+
'num_datasets' in row and pd.notna(row['num_datasets']) and row["arxiv_id"]
|
233 |
+
and float(row['num_datasets']) > 0
|
234 |
+
):
|
235 |
+
num_datasets = int(float(row['num_datasets']))
|
236 |
+
row['num_datasets'] = (
|
237 |
+
f"[{num_datasets}](https://huggingface.co/datasets?other=arxiv:{row['arxiv_id']})"
|
238 |
+
)
|
239 |
+
|
240 |
+
if (
|
241 |
+
'num_spaces' in row and pd.notna(row['num_spaces']) and row["arxiv_id"]
|
242 |
+
and float(row['num_spaces']) > 0
|
243 |
+
):
|
244 |
+
num_spaces = int(float(row['num_spaces']))
|
245 |
+
row['num_spaces'] = (
|
246 |
+
f"[{num_spaces}](https://huggingface.co/spaces?other=arxiv:{row['arxiv_id']})"
|
247 |
+
)
|
248 |
+
|
249 |
+
if 'proceedings' in row and pd.notna(row['proceedings']) and row['proceedings']:
|
250 |
+
image_url = PaperCentral.CONFERENCES_ICONS[row["conference_name"]]
|
251 |
+
|
252 |
+
style = "display:inline-block; vertical-align:middle; width: 16px; height:16px"
|
253 |
+
row['proceedings'] = (
|
254 |
+
f"<img src='{image_url}' style='{style}'/>"
|
255 |
+
f"<a href='{row['proceedings']}'>proc_page</a>"
|
256 |
+
)
|
257 |
+
|
258 |
+
####
|
259 |
+
### This should be processed last :)
|
260 |
+
####
|
261 |
+
# Add markdown link to 'paper_page' if it exists
|
262 |
+
if 'paper_page' in row and pd.notna(row['paper_page']):
|
263 |
+
row['paper_page'] = f"🤗[paper_page](https://huggingface.co/papers/{row['paper_page']})"
|
264 |
+
|
265 |
+
# Add image and link to 'arxiv_id' if it exists
|
266 |
+
if 'arxiv_id' in row and pd.notna(row['arxiv_id']):
|
267 |
+
image_url = "https://arxiv.org/static/browse/0.3.4/images/icons/favicon-16x16.png"
|
268 |
+
style = "display:inline-block; vertical-align:middle;"
|
269 |
+
row['arxiv_id'] = (
|
270 |
+
f"<img src='{image_url}' style='{style}'/>"
|
271 |
+
f"<a href='https://arxiv.org/abs/{row['arxiv_id']}'>arxiv_page</a>"
|
272 |
+
)
|
273 |
+
|
274 |
+
return row
|
275 |
+
|
276 |
+
df = df.copy()
|
277 |
+
|
278 |
+
# Sort rows to display entries with 'paper_page' first
|
279 |
+
if 'paper_page' in df.columns:
|
280 |
+
df['has_paper_page'] = df['paper_page'].notna()
|
281 |
+
df.sort_values(by='has_paper_page', ascending=False, inplace=True)
|
282 |
+
df.drop(columns='has_paper_page', inplace=True)
|
283 |
+
|
284 |
+
# Apply the update_row function to each row
|
285 |
+
prettified_df: pd.DataFrame = df.apply(update_row, axis=1)
|
286 |
+
return prettified_df
|
287 |
+
|
288 |
+
def rename_columns_for_display(self, df: pd.DataFrame) -> pd.DataFrame:
|
289 |
+
"""
|
290 |
+
Rename columns in the DataFrame according to COLUMN_RENAME_MAP for display purposes.
|
291 |
+
|
292 |
+
Args:
|
293 |
+
df (pd.DataFrame): The DataFrame whose columns need to be renamed.
|
294 |
+
|
295 |
+
Returns:
|
296 |
+
pd.DataFrame: The DataFrame with renamed columns.
|
297 |
+
"""
|
298 |
+
return df.rename(columns=self.COLUMN_RENAME_MAP)
|
299 |
+
|
300 |
+
def filter(
|
301 |
+
self,
|
302 |
+
selected_date: Optional[str] = None,
|
303 |
+
cat_options: Optional[List[str]] = None,
|
304 |
+
hf_options: Optional[List[str]] = None,
|
305 |
+
conference_options: Optional[List[str]] = None
|
306 |
+
) -> gr.update:
|
307 |
+
"""
|
308 |
+
Filter the DataFrame based on selected date and options, and prepare it for display.
|
309 |
+
|
310 |
+
Args:
|
311 |
+
selected_date (Optional[str]): The date to filter the DataFrame.
|
312 |
+
hf_options (Optional[List[str]]): List of options selected by the user.
|
313 |
+
conference_options (Optional[List[str]]): List of conference options selected by the user.
|
314 |
+
|
315 |
+
Returns:
|
316 |
+
gr.Update: An update object for the Gradio Dataframe component.
|
317 |
+
"""
|
318 |
+
filtered_df: pd.DataFrame = self.df_raw.copy()
|
319 |
+
|
320 |
+
# Start with the initial columns to display
|
321 |
+
columns_to_show: List[str] = PaperCentral.COLUMNS_START_PAPER_PAGE.copy()
|
322 |
+
|
323 |
+
if cat_options:
|
324 |
+
options = [o.replace(".*", "") for o in cat_options]
|
325 |
+
# Initialize filter series
|
326 |
+
conference_filter = pd.Series(False, index=filtered_df.index)
|
327 |
+
for option in options:
|
328 |
+
# Filter rows where 'conference_name' contains the conference string (case-insensitive)
|
329 |
+
conference_filter |= (
|
330 |
+
filtered_df['primary_category'].notna() &
|
331 |
+
filtered_df['primary_category'].str.contains(option, case=False)
|
332 |
+
)
|
333 |
+
filtered_df = filtered_df[conference_filter]
|
334 |
+
|
335 |
+
# Date
|
336 |
+
if selected_date and not conference_options:
|
337 |
+
selected_date = pd.to_datetime(selected_date).strftime('%Y-%m-%d')
|
338 |
+
filtered_df = filtered_df[filtered_df['date'] == selected_date]
|
339 |
+
|
340 |
+
# HF options
|
341 |
+
if hf_options:
|
342 |
+
if "show_details" in hf_options:
|
343 |
+
# Filter rows where 'paper_page' is not empty or NaN
|
344 |
+
filtered_df = filtered_df[
|
345 |
+
(filtered_df['paper_page'] != "") & (filtered_df['paper_page'].notna())
|
346 |
+
]
|
347 |
+
|
348 |
+
# Add 'upvotes' column if not already in columns_to_show
|
349 |
+
if 'upvotes' not in columns_to_show:
|
350 |
+
columns_to_show.append('upvotes')
|
351 |
+
|
352 |
+
# Add 'num_models' column if not already in columns_to_show
|
353 |
+
if 'num_models' not in columns_to_show:
|
354 |
+
columns_to_show.append('num_models')
|
355 |
+
if 'num_datasets' not in columns_to_show:
|
356 |
+
columns_to_show.append('num_datasets')
|
357 |
+
if 'num_spaces' not in columns_to_show:
|
358 |
+
columns_to_show.append('num_spaces')
|
359 |
+
|
360 |
+
if "datasets" in hf_options:
|
361 |
+
if 'num_datasets' not in columns_to_show:
|
362 |
+
columns_to_show.append('num_datasets')
|
363 |
+
filtered_df = filtered_df[filtered_df['num_datasets'] != 0]
|
364 |
+
|
365 |
+
if "models" in hf_options:
|
366 |
+
if 'num_models' not in columns_to_show:
|
367 |
+
columns_to_show.append('num_models')
|
368 |
+
filtered_df = filtered_df[filtered_df['num_models'] != 0]
|
369 |
+
if "spaces" in hf_options:
|
370 |
+
if 'num_spaces' not in columns_to_show:
|
371 |
+
columns_to_show.append('num_spaces')
|
372 |
+
filtered_df = filtered_df[filtered_df['num_spaces'] != 0]
|
373 |
+
|
374 |
+
# Apply conference filtering
|
375 |
+
if conference_options:
|
376 |
+
|
377 |
+
columns_to_show.remove("date")
|
378 |
+
columns_to_show.remove("arxiv_id")
|
379 |
+
|
380 |
+
if 'conference_name' not in columns_to_show:
|
381 |
+
columns_to_show.append('conference_name')
|
382 |
+
|
383 |
+
if 'proceedings' not in columns_to_show:
|
384 |
+
columns_to_show.append('proceedings')
|
385 |
+
|
386 |
+
if 'type' not in columns_to_show:
|
387 |
+
columns_to_show.append('type')
|
388 |
+
|
389 |
+
if 'id' not in columns_to_show:
|
390 |
+
columns_to_show.append('id')
|
391 |
+
|
392 |
+
# If "In proceedings" is selected
|
393 |
+
if "In proceedings" in conference_options:
|
394 |
+
# Filter rows where 'conference_name' is not None, not NaN, and not empty
|
395 |
+
filtered_df = filtered_df[
|
396 |
+
filtered_df['conference_name'].notna() & (filtered_df['conference_name'] != "")
|
397 |
+
]
|
398 |
+
|
399 |
+
# For other conference options
|
400 |
+
other_conferences = [conf for conf in conference_options if conf != "In proceedings"]
|
401 |
+
if other_conferences:
|
402 |
+
# Initialize filter series
|
403 |
+
conference_filter = pd.Series(False, index=filtered_df.index)
|
404 |
+
for conference in other_conferences:
|
405 |
+
# Filter rows where 'conference_name' contains the conference string (case-insensitive)
|
406 |
+
conference_filter |= (
|
407 |
+
filtered_df['conference_name'].notna() &
|
408 |
+
(filtered_df['conference_name'].str.lower() == conference.lower())
|
409 |
+
)
|
410 |
+
filtered_df = filtered_df[conference_filter]
|
411 |
+
|
412 |
+
# Prettify the DataFrame
|
413 |
+
filtered_df = self.prettify(filtered_df)
|
414 |
+
|
415 |
+
# Ensure columns are ordered according to COLUMNS_ORDER_PAPER_PAGE
|
416 |
+
columns_in_order: List[str] = [col for col in PaperCentral.COLUMNS_ORDER_PAPER_PAGE if col in columns_to_show]
|
417 |
+
|
418 |
+
# Select and reorder the columns
|
419 |
+
filtered_df = filtered_df[columns_in_order]
|
420 |
+
|
421 |
+
# Rename columns for display
|
422 |
+
filtered_df = self.rename_columns_for_display(filtered_df)
|
423 |
+
|
424 |
+
# Get the corresponding data types for the columns
|
425 |
+
new_datatypes: List[str] = [
|
426 |
+
PaperCentral.DATATYPES.get(self._get_original_column_name(col), 'str') for col in filtered_df.columns
|
427 |
+
]
|
428 |
+
|
429 |
+
# Return an update object to modify the Dataframe component
|
430 |
+
return gr.update(value=filtered_df, datatype=new_datatypes)
|
431 |
+
|
432 |
+
def _get_original_column_name(self, display_column_name: str) -> str:
|
433 |
+
"""
|
434 |
+
Retrieve the original column name given a display column name.
|
435 |
+
|
436 |
+
Args:
|
437 |
+
display_column_name (str): The display name of the column.
|
438 |
+
|
439 |
+
Returns:
|
440 |
+
str: The original name of the column.
|
441 |
+
"""
|
442 |
+
inverse_map = {v: k for k, v in self.COLUMN_RENAME_MAP.items()}
|
443 |
+
return inverse_map.get(display_column_name, display_column_name)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
gradio_calendar
|
3 |
+
datasets
|
style.css
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
h1 {
|
2 |
+
text-align: center;
|
3 |
+
display: block;
|
4 |
+
}
|
5 |
+
|
6 |
+
body a,
|
7 |
+
.contain a,
|
8 |
+
#table a {
|
9 |
+
background-color: transparent;
|
10 |
+
color: #58a6ff;
|
11 |
+
text-decoration: none;
|
12 |
+
}
|
13 |
+
|
14 |
+
body a:active,
|
15 |
+
body a:hover {
|
16 |
+
outline-width: 0;
|
17 |
+
}
|
18 |
+
|
19 |
+
body a:hover {
|
20 |
+
text-decoration: underline;
|
21 |
+
}
|
22 |
+
|
23 |
+
|
utils.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from datasets import load_dataset
|
3 |
+
|
4 |
+
|
5 |
+
def arxiv_remove_version_suffix(arxiv_id):
|
6 |
+
# Use regex to remove version suffix (e.g., v1, v2, etc.) if present
|
7 |
+
cleaned_id = re.sub(r'v\d+$', '', arxiv_id)
|
8 |
+
return cleaned_id
|
9 |
+
|
10 |
+
|
11 |
+
# Load datasets
|
12 |
+
def load_and_process(dataset_name):
|
13 |
+
data = load_dataset(dataset_name, split="train").to_pandas()
|
14 |
+
if 'arxiv_id' in data.columns:
|
15 |
+
data['arxiv_id'] = data['arxiv_id'].apply(arxiv_remove_version_suffix)
|
16 |
+
return data
|