hf-speech-bench / app.py
speech-test's picture
fix
3932541
raw
history blame
3.79 kB
import requests
import pandas as pd
from tqdm.auto import tqdm
import streamlit as st
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load
cer_langs = ["ja", "zh-CN", "zh-HK", "zh-TW"]
def make_clickable(model_name):
link = "https://huggingface.co/" + model_name
return f'<a target="_blank" href="{link}">{model_name}</a>'
def get_model_ids():
api = HfApi()
models = api.list_models(filter="robust-speech-event")
model_ids = [x.modelId for x in models]
return model_ids
def get_metadata(model_id):
try:
readme_path = hf_hub_download(model_id, filename="README.md")
return metadata_load(readme_path)
except requests.exceptions.HTTPError:
# 404 README.md not found
return None
def parse_metric_value(value):
if isinstance(value, str):
"".join(value.split("%"))
try:
value = float(value)
except: # noqa: E722
value = None
elif isinstance(value, float) and value < 1.0:
# assuming that WER is given in 0.xx format
value = 100 * value
elif isinstance(value, list):
if len(value) > 0:
value = value[0]
else:
value = None
value = round(value, 2) if value is not None else None
return value
def parse_metrics_row(meta):
if "model-index" not in meta or "language" not in meta:
return None
lang = meta["language"]
lang = lang[0] if isinstance(lang, list) else lang
for result in meta["model-index"][0]["results"]:
if "dataset" not in result or "metrics" not in result:
continue
dataset = result["dataset"]["type"]
if "args" not in result["dataset"]:
continue
dataset_config = result["dataset"]["args"]
row = {"dataset": dataset, "lang": lang}
for metric in result["metrics"]:
type = metric["type"].lower().strip()
if type not in ["wer", "cer"]:
continue
value = parse_metric_value(metric["value"])
if value is None:
continue
if type not in row or value < row[type]:
# overwrite the metric if the new value is lower (e.g. with LM)
row[type] = value
if "wer" in row or "cer" in row:
return row
return None
@st.cache(ttl=600)
def get_data():
data = []
model_ids = get_model_ids()
for model_id in tqdm(model_ids):
meta = get_metadata(model_id)
if meta is None:
continue
row = parse_metrics_row(meta)
if row is None:
continue
row["model_id"] = model_id
data.append(row)
return pd.DataFrame.from_records(data)
dataframe = get_data()
dataframe = dataframe.fillna("")
dataframe["model_id"] = dataframe["model_id"].apply(make_clickable)
_, col_center = st.columns([3, 6])
with col_center:
st.image("logo.png", width=200)
st.markdown("# Speech Models Leaderboard")
lang = st.selectbox(
"Language",
sorted(dataframe["lang"].unique()),
index=0,
)
lang_df = dataframe[dataframe.lang == lang]
dataset = st.selectbox(
"Dataset",
sorted(lang_df["dataset"].unique()),
index=0,
)
dataset_df = lang_df[lang_df.dataset == dataset]
if lang in cer_langs:
dataset_df = dataset_df[["model_id", "cer"]]
dataset_df.sort_values("cer", inplace=True)
else:
dataset_df = dataset_df[["model_id", "wer"]]
dataset_df.sort_values("wer", inplace=True)
dataset_df.rename(
columns={
"model_id": "Model",
"wer": "WER (lower is better)",
"cer": "CER (lower is better)",
},
inplace=True,
)
st.write(dataset_df.to_html(escape=False, index=None), unsafe_allow_html=True)