chrisjay's picture
initial files
059d8f0
raw
history blame
4.66 kB
import requests
import json
import pandas as pd
from tqdm.auto import tqdm
import gradio as gr
#import streamlit as st
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load
#import streamlit.components.v1 as components
# Based on Omar Sanseviero work
# Make model clickable link
def make_clickable_model(model_name):
link = "https://huggingface.co/" + model_name
return f'<a target="_blank" href="{link}">{model_name}</a>'
# Make user clickable link
def make_clickable_user(user_id):
link = "https://huggingface.co/" + user_id
return f'<a target="_blank" href="{link}">{user_id}</a>'
def get_model_ids(rl_env):
api = HfApi()
models = api.list_models(filter=rl_env)
model_ids = [x.modelId for x in models]
return model_ids
def get_metadata(model_id):
try:
readme_path = hf_hub_download(model_id, filename="README.md")
return metadata_load(readme_path)
except requests.exceptions.HTTPError:
# 404 README.md not found
return None
def parse_metrics_accuracy(meta):
if "model-index" not in meta:
return None
result = meta["model-index"][0]["results"]
metrics = result[0]["metrics"]
accuracy = metrics[0]["value"]
print("ACCURACY", accuracy)
return accuracy
# We keep the worst case episode
def parse_rewards(accuracy):
if accuracy != None:
parsed = accuracy.split(' +/- ')
mean_reward = float(parsed[0])
std_reward = float(parsed[1])
else:
mean_reward = -1000
std_reward = -1000
return mean_reward, std_reward
def get_data(rl_env):
data = []
model_ids = get_model_ids(rl_env)
for model_id in tqdm(model_ids):
meta = get_metadata(model_id)
if meta is None:
continue
user_id = model_id.split('/')[0]
row = {}
row["User"] = user_id
row["Model"] = model_id
accuracy = parse_metrics_accuracy(meta)
print("RETURNED ACCURACY", accuracy)
mean_reward, std_reward = parse_rewards(accuracy)
print("MEAN REWARD", mean_reward)
row["Results"] = mean_reward - std_reward
row["Mean Reward"] = mean_reward
row["Std Reward"] = std_reward
data.append(row)
return pd.DataFrame.from_records(data)
def get_data_per_env(rl_env):
dataframe = get_data(rl_env)
dataframe = dataframe.fillna("")
#import pdb; pdb.set_trace()
if not dataframe.empty:
# turn the model ids into clickable links
dataframe["User"] = dataframe["User"].apply(make_clickable_user)
dataframe["Model"] = dataframe["Model"].apply(make_clickable_model)
dataframe = dataframe.sort_values(by=['Results'], ascending=False)
table_html = dataframe.to_html(escape=False, index=False)
table_html = table_html.replace("<th>", '<th align="left">') # left-align the headers
return table_html,dataframe,dataframe.empty
else:
html = """<div style="color: green">
<p> βŒ› Please wait. Results will be out soon... </p>
</div>
"""
return html,dataframe,dataframe.empty
RL_ENVS = ['CarRacing-v0','MountainCar-v0','LunarLander-v2']
RL_DETAILS ={'CarRacing-v0':{'title':" The Car Racing πŸŒ• Leaderboard πŸš€",'data':get_data_per_env('CarRacing-v0')},
'MountainCar-v0':{'title':"The Mountain Car πŸŒ• Leaderboard πŸš€",'data':get_data_per_env('MountainCar-v0')},
'LunarLander-v2':{'title':" The Lunar Lander πŸŒ• Leaderboard πŸš€",'data':get_data_per_env('LunarLander-v2')}
}
block = gr.Blocks()
with block:
with gr.Tabs():
for rl_env in RL_ENVS:
with gr.TabItem(rl_env):
data_html,data_dataframe,is_empty = RL_DETAILS[rl_env]['data']
markdown = """
# {name_leaderboard}
This is a leaderboard of {len_dataframe}** agents playing {env_name} πŸ‘©β€πŸš€.
We use lower bound result to sort the models: mean_reward - std_reward.
You can click on the model's name to be redirected to its model card which includes documentation.
You want to try your model? Read this Unit 1 of Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/blob/Unit1/unit1/README.md.
""".format(len_dataframe = len(data_dataframe),env_name = rl_env,name_leaderboard = RL_DETAILS[rl_env]['title'])
gr.Markdown(markdown)
gr.HTML(data_html)
block.launch()